These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 31686038)

  • 21. The expanding horizon of alkyl quinolone signalling and communication in polycellular interactomes.
    Reen FJ; McGlacken GP; O'Gara F
    FEMS Microbiol Lett; 2018 May; 365(9):. PubMed ID: 29718276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neutrophilic proteolysis in the cystic fibrosis lung correlates with a pathogenic microbiome.
    Quinn RA; Adem S; Mills RH; Comstock W; DeRight Goldasich L; Humphrey G; Aksenov AA; Melnik AV; da Silva R; Ackermann G; Bandeira N; Gonzalez DJ; Conrad D; O'Donoghue AJ; Knight R; Dorrestein PC
    Microbiome; 2019 Feb; 7(1):23. PubMed ID: 30760325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial Gene Ontology informed deep neural network for microbe functionality discovery in human diseases.
    Liu Y; Zhang YZ; Imoto S
    PLoS One; 2023; 18(8):e0290307. PubMed ID: 37603579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic flux analyses of Pseudomonas aeruginosa cystic fibrosis isolates.
    Opperman MJ; Shachar-Hill Y
    Metab Eng; 2016 Nov; 38():251-263. PubMed ID: 27637318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strain-Resolved Dynamics of the Lung Microbiome in Patients with Cystic Fibrosis.
    Dmitrijeva M; Kahlert CR; Feigelman R; Kleiner RL; Nolte O; Albrich WC; Baty F; von Mering C
    mBio; 2021 Mar; 12(2):. PubMed ID: 33688005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Volatile fingerprinting of Pseudomonas aeruginosa and respiratory syncytial virus infection in an in vitro cystic fibrosis co-infection model.
    Purcaro G; Rees CA; Melvin JA; Bomberger JM; Hill JE
    J Breath Res; 2018 Jul; 12(4):046001. PubMed ID: 29735804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease.
    Melhem H; Kaya B; Ayata CK; Hruz P; Niess JH
    Cells; 2019 May; 8(5):. PubMed ID: 31091682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice.
    Sandri A; Ortombina A; Boschi F; Cremonini E; Boaretti M; Sorio C; Melotti P; Bergamini G; Lleo M
    Virulence; 2018; 9(1):1008-1018. PubMed ID: 29938577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciphering associations between gut microbiota and clinical factors using microbial modules.
    Wang R; Zheng X; Song F; Wong MH; Leung KS; Cheng L
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Links Between Inflammatory Bowel Disease and Chronic Obstructive Pulmonary Disease.
    Raftery AL; Tsantikos E; Harris NL; Hibbs ML
    Front Immunol; 2020; 11():2144. PubMed ID: 33042125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of the respiratory tract microbiota in cystic fibrosis.
    de Koff EM; Groot KM; Bogaert D
    Curr Opin Pulm Med; 2016 Nov; 22(6):623-628. PubMed ID: 27841789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Past, Present, and Future Research on the Lung Microbiome in Inflammatory Airway Disease.
    Caverly LJ; Huang YJ; Sze MA
    Chest; 2019 Aug; 156(2):376-382. PubMed ID: 31154042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of the respiratory tract microbiota in cystic fibrosis.
    de Koff EM; de Winter – de Groot KM; Bogaert D
    Curr Opin Pulm Med; 2016 Nov; 22(6):623-8. PubMed ID: 27583669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomics of bacterial pathogens: Pseudomonas aeruginosa infections in cystic fibrosis - a case study.
    Hare NJ; Cordwell SJ
    Proteomics Clin Appl; 2010 Feb; 4(2):228-48. PubMed ID: 21137046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pseudomonas aeruginosa Volatilome Characteristics and Adaptations in Chronic Cystic Fibrosis Lung Infections.
    Davis TJ; Karanjia AV; Bhebhe CN; West SB; Richardson M; Bean HD
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33028687
    [No Abstract]   [Full Text] [Related]  

  • 36. Adaptation and Evolution of Pathogens in the Cystic Fibrosis Lung.
    Planet PJ
    J Pediatric Infect Dis Soc; 2022 Sep; 11(Supplement_2):S23-S31. PubMed ID: 36069898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. N-glycosylation augmentation of the cystic fibrosis epithelium improves Pseudomonas aeruginosa clearance.
    Martino AT; Mueller C; Braag S; Cruz PE; Campbell-Thompson M; Jin S; Flotte TR
    Am J Respir Cell Mol Biol; 2011 Jun; 44(6):824-30. PubMed ID: 20693405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic Colonization of Microbes and Their Functions after Fecal Microbiota Transplantation for Inflammatory Bowel Disease.
    Chu ND; Crothers JW; Nguyen LTT; Kearney SM; Smith MB; Kassam Z; Collins C; Xavier R; Moses PL; Alm EJ
    mBio; 2021 Aug; 12(4):e0097521. PubMed ID: 34281401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discriminating typical and atypical cystic fibrosis-related bacteria by multiplex PNA-FISH.
    Lopes SP; Carvalho DT; Pereira MO; Azevedo NF
    Biotechnol Bioeng; 2017 Feb; 114(2):355-367. PubMed ID: 27571488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emerging cystic fibrosis pathogens and the microbiome.
    Mahenthiralingam E
    Paediatr Respir Rev; 2014 Jun; 15 Suppl 1():13-5. PubMed ID: 24832700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.