These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 31686038)

  • 41. The cystic fibrosis microbiome in an ecological perspective and its impact in antibiotic therapy.
    Magalhães AP; Azevedo NF; Pereira MO; Lopes SP
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1163-1181. PubMed ID: 26637419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolite profiling to characterize disease-related bacteria: gluconate excretion by Pseudomonas aeruginosa mutants and clinical isolates from cystic fibrosis patients.
    Behrends V; Bell TJ; Liebeke M; Cordes-Blauert A; Ashraf SN; Nair C; Zlosnik JE; Williams HD; Bundy JG
    J Biol Chem; 2013 May; 288(21):15098-109. PubMed ID: 23572517
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Therapeutic Opportunities in Inflammatory Bowel Disease: Mechanistic Dissection of Host-Microbiome Relationships.
    Plichta DR; Graham DB; Subramanian S; Xavier RJ
    Cell; 2019 Aug; 178(5):1041-1056. PubMed ID: 31442399
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pseudomonas aeruginosa Alginate Benefits Staphylococcus aureus?
    Schurr MJ
    J Bacteriol; 2020 Mar; 202(8):. PubMed ID: 32015142
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex.
    Dryahina K; Sovová K; Nemec A; Španěl P
    J Breath Res; 2016 Aug; 10(3):037102. PubMed ID: 27506232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reemergence of Lower-Airway Microbiota in Lung Transplant Patients with Cystic Fibrosis.
    Syed SA; Whelan FJ; Waddell B; Rabin HR; Parkins MD; Surette MG
    Ann Am Thorac Soc; 2016 Dec; 13(12):2132-2142. PubMed ID: 27925791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Opportunistic bacteria confer the ability to ferment prebiotic starch in the adult cystic fibrosis gut.
    Wang Y; Leong LEX; Keating RL; Kanno T; Abell GCJ; Mobegi FM; Choo JM; Wesselingh SL; Mason AJ; Burr LD; Rogers GB
    Gut Microbes; 2019; 10(3):367-381. PubMed ID: 30359203
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biosignificance of bacterial cyanogenesis in the CF lung.
    Anderson RD; Roddam LF; Bettiol S; Sanderson K; Reid DW
    J Cyst Fibros; 2010 May; 9(3):158-64. PubMed ID: 20156704
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimizing the Production of Nursery-Based Biological Soil Crusts for Restoration of Arid Land Soils.
    Bethany J; Giraldo-Silva A; Nelson C; Barger NN; Garcia-Pichel F
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31152015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Staphylococcus aureus Protein A Mediates Interspecies Interactions at the Cell Surface of Pseudomonas aeruginosa.
    Armbruster CR; Wolter DJ; Mishra M; Hayden HS; Radey MC; Merrihew G; MacCoss MJ; Burns J; Wozniak DJ; Parsek MR; Hoffman LR
    mBio; 2016 May; 7(3):. PubMed ID: 27222468
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic Functions of Gut Microbes Associate With Efficacy of Tumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases.
    Aden K; Rehman A; Waschina S; Pan WH; Walker A; Lucio M; Nunez AM; Bharti R; Zimmerman J; Bethge J; Schulte B; Schulte D; Franke A; Nikolaus S; Schroeder JO; Vandeputte D; Raes J; Szymczak S; Waetzig GH; Zeuner R; Schmitt-Kopplin P; Kaleta C; Schreiber S; Rosenstiel P
    Gastroenterology; 2019 Nov; 157(5):1279-1292.e11. PubMed ID: 31326413
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Supplemental Oxygen Alters the Airway Microbiome in Cystic Fibrosis.
    Vieira J; Jesudasen S; Bringhurst L; Sui HY; McIver L; Whiteson K; Hanselmann K; O'Toole GA; Richards CJ; Sicilian L; Neuringer I; Lai PS
    mSystems; 2022 Oct; 7(5):e0036422. PubMed ID: 36000724
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The determinants of survival among adults with cystic fibrosis-a cohort study.
    Durda-Masny M; Goździk-Spychalska J; John A; Czaiński W; Stróżewska W; Pawłowska N; Wlizło J; Batura-Gabryel H; Szwed A
    J Physiol Anthropol; 2021 Nov; 40(1):19. PubMed ID: 34749804
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Iron-Mediated Control of Pseudomonas aeruginosa-Staphylococcus aureus Interactions in the Cystic Fibrosis Lung.
    Barnabie PM; Whiteley M
    J Bacteriol; 2015 Jul; 197(14):2250-1. PubMed ID: 25917912
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa.
    Chatterjee P; Davis E; Yu F; James S; Wildschutte JH; Wiegmann DD; Sherman DH; McKay RM; LiPuma JJ; Wildschutte H
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27881418
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-Omics Study of Keystone Species in a Cystic Fibrosis Microbiome.
    Silveira CB; Cobián-Güemes AG; Uranga C; Baker JL; Edlund A; Rohwer F; Conrad D
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769481
    [TBL] [Abstract][Full Text] [Related]  

  • 57. IMOVNN: incomplete multi-omics data integration variational neural networks for gut microbiome disease prediction and biomarker identification.
    Hu M; Zhu J; Peng G; Lu W; Wang H; Xie Z
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37930027
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Staphylococcus aureus in cystic fibrosis: pivotal role or bit part actor?
    Hurley MN; Smyth AR
    Curr Opin Pulm Med; 2018 Nov; 24(6):586-591. PubMed ID: 30113336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microenvironmental Factors that Shape Bacterial Metabolites in Inflammatory Bowel Disease.
    Lopez LR; Ahn JH; Alves T; Arthur JC
    Front Cell Infect Microbiol; 2022; 12():934619. PubMed ID: 35959366
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pseudomonas aeruginosa alginate promotes Burkholderia cenocepacia persistence in cystic fibrosis transmembrane conductance regulator knockout mice.
    Chattoraj SS; Murthy R; Ganesan S; Goldberg JB; Zhao Y; Hershenson MB; Sajjan US
    Infect Immun; 2010 Mar; 78(3):984-93. PubMed ID: 20048042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.