These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31686039)

  • 1. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning.
    Wu Y; Rivenson Y; Wang H; Luo Y; Ben-David E; Bentolila LA; Pritz C; Ozcan A
    Nat Methods; 2019 Dec; 16(12):1323-1331. PubMed ID: 31686039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy.
    Park H; Na M; Kim B; Park S; Kim KH; Chang S; Ye JC
    Nat Commun; 2022 Jun; 13(1):3297. PubMed ID: 35676288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration.
    Forsgren E; Edlund C; Oliver M; Barnes K; Sjögren R; Jackson TR
    PLoS One; 2022; 17(5):e0264241. PubMed ID: 35588399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent neural network-based volumetric fluorescence microscopy.
    Huang L; Chen H; Luo Y; Rivenson Y; Ozcan A
    Light Sci Appl; 2021 Mar; 10(1):62. PubMed ID: 33753716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy.
    Qiao C; Zeng Y; Meng Q; Chen X; Chen H; Jiang T; Wei R; Guo J; Fu W; Lu H; Li D; Wang Y; Qiao H; Wu J; Li D; Dai Q
    Nat Commun; 2024 May; 15(1):4180. PubMed ID: 38755148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning enables cross-modality super-resolution in fluorescence microscopy.
    Wang H; Rivenson Y; Jin Y; Wei Z; Gao R; Günaydın H; Bentolila LA; Kural C; Ozcan A
    Nat Methods; 2019 Jan; 16(1):103-110. PubMed ID: 30559434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional fluorescence microscopy through virtual refocusing using a recursive light propagation network.
    Shin C; Ryu H; Cho ES; Han S; Lee KH; Kim CH; Yoon YG
    Med Image Anal; 2022 Nov; 82():102600. PubMed ID: 36116298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging adult C. elegans live using light-sheet microscopy.
    VAN Krugten J; Taris KH; Peterman EJG
    J Microsc; 2021 Mar; 281(3):214-223. PubMed ID: 32949409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens.
    Xiao L; Fang C; Zhu L; Wang Y; Yu T; Zhao Y; Zhu D; Fei P
    Opt Express; 2020 Sep; 28(20):30234-30247. PubMed ID: 33114907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time slit scanning microscopy in the meridional plane.
    Botcherby EJ; Booth MJ; Juskaitis R; Wilson T
    Opt Lett; 2009 May; 34(10):1504-6. PubMed ID: 19448802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstrating Improved Multiple Transport-Mean-Free-Path Imaging Capabilities of Light Sheet Microscopy in the Quantification of Fluorescence Dynamics.
    Rieckher M; Psycharakis Daniele Ancora SE; Liapis E; Zacharopoulos A; Ripoll J; Tavernarakis N; Zacharakis G
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 29168308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning.
    Wang Z; Zhu L; Zhang H; Li G; Yi C; Li Y; Yang Y; Ding Y; Zhen M; Gao S; Hsiai TK; Fei P
    Nat Methods; 2021 May; 18(5):551-556. PubMed ID: 33574612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scan-less machine-learning-enabled incoherent microscopy for minimally-invasive deep-brain imaging.
    Guo R; Nelson S; Regier M; Davis MW; Jorgensen EM; Shepherd J; Menon R
    Opt Express; 2022 Jan; 30(2):1546-1554. PubMed ID: 35209312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-3D microscope: 3D volumetric microscopy of thick scattering samples using a wide-field microscope and machine learning.
    Li B; Tan S; Dong J; Lian X; Zhang Y; Ji X; Veeraraghavan A
    Biomed Opt Express; 2022 Jan; 13(1):284-299. PubMed ID: 35154871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D high resolution generative deep-learning network for fluorescence microscopy imaging.
    Zhou H; Cai R; Quan T; Liu S; Li S; Huang Q; Ertürk A; Zeng S
    Opt Lett; 2020 Apr; 45(7):1695-1698. PubMed ID: 32235976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-cost optofluidic add-on enables rapid selective plane illumination microscopy of C. elegans with a conventional wide-field microscope.
    Behrouzi M; Youssef K; Rezai P; Tabatabaei N
    J Biomed Opt; 2021 Dec; 26(12):. PubMed ID: 34894114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes.
    Chen J; Sasaki H; Lai H; Su Y; Liu J; Wu Y; Zhovmer A; Combs CA; Rey-Suarez I; Chang HY; Huang CC; Li X; Guo M; Nizambad S; Upadhyaya A; Lee SJ; Lucas LAG; Shroff H
    Nat Methods; 2021 Jun; 18(6):678-687. PubMed ID: 34059829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Straightening Caenorhabditis elegans images.
    Peng H; Long F; Liu X; Kim SK; Myers EW
    Bioinformatics; 2008 Jan; 24(2):234-42. PubMed ID: 18025002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution three-dimensional images from confocal scanning laser microscopy. Quantitative study and mathematical correction of the effects from bleaching and fluorescence attenuation in depth.
    Rigaut JP; Vassy J
    Anal Quant Cytol Histol; 1991 Aug; 13(4):223-32. PubMed ID: 1930541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.