These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31686046)

  • 41. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview.
    Rozema J; Boelen P; Blokker P
    Environ Pollut; 2005 Oct; 137(3):428-42. PubMed ID: 16005756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Does cosmic-ray-induced heterogeneous chemistry influence stratospheric polar ozone loss?
    Müller R; Grooss JU
    Phys Rev Lett; 2009 Nov; 103(22):228501. PubMed ID: 20366127
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer.
    Li L; Xu J; Hu J; Han J
    Environ Sci Technol; 2014 May; 48(9):5290-7. PubMed ID: 24749524
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol.
    Chipperfield MP; Dhomse SS; Feng W; McKenzie RL; Velders GJM; Pyle JA
    Nat Commun; 2015 May; 6():7233. PubMed ID: 26011106
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ozone depletion and climate change: impacts on UV radiation.
    McKenzie RL; Aucamp PJ; Bais AF; Björn LO; Ilyas M; Madronich S
    Photochem Photobiol Sci; 2011 Feb; 10(2):182-98. PubMed ID: 21253660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rare forecasted climate event under way in the Southern Hemisphere.
    Hendon HH; Thompson DWJ; Lim EP; Butler AH; Newman PA; Coy L; Scaife A; Polichtchouk I; Garreaud RS; Shepherd TG; Nakamura H
    Nature; 2019 Sep; 573(7775):495. PubMed ID: 31548695
    [No Abstract]   [Full Text] [Related]  

  • 47. Ten years of continuous observations of stratospheric ozone depleting gases at Monte Cimone (Italy)--comments on the effectiveness of the Montreal Protocol from a regional perspective.
    Maione M; Giostra U; Arduini J; Furlani F; Graziosi F; Lo Vullo E; Bonasoni P
    Sci Total Environ; 2013 Feb; 445-446():155-64. PubMed ID: 23333511
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The impact of the rise in atmospheric nitrous oxide on stratospheric ozone : This article belongs to Ambio's 50th Anniversary Collection. Theme: Ozone Layer.
    Müller R
    Ambio; 2021 Jan; 50(1):35-39. PubMed ID: 33222088
    [No Abstract]   [Full Text] [Related]  

  • 49. The stratospheric ozone layer-an overview.
    Peter T
    Environ Pollut; 1994; 83(1-2):69-79. PubMed ID: 15091752
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System - Version 5 (GEOS-5).
    Li F; Vikhliaev YV; Newman PA; Pawson S; Perlwitz J; Waugh DW; Douglass AR
    J Clim; 2016; 29(9):3199-3218. PubMed ID: 32742076
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The signs of Antarctic ozone hole recovery.
    Kuttippurath J; Nair PJ
    Sci Rep; 2017 Apr; 7(1):585. PubMed ID: 28373709
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Climate change and atmospheric chemistry: how will the stratospheric ozone layer develop?
    Dameris M
    Angew Chem Int Ed Engl; 2010 Oct; 49(44):8092-102. PubMed ID: 20922727
    [TBL] [Abstract][Full Text] [Related]  

  • 53. How CubeSats could harm the ozone layer.
    Nature; 2023 Apr; 616(7958):633. PubMed ID: 37081266
    [No Abstract]   [Full Text] [Related]  

  • 54. Identification of influential events concerning the Antarctic ozone hole over southern Brazil and the biological effects induced by UVB and UVA radiation in an endemic treefrog species.
    Passaglia Schuch A; Dos Santos MB; Mendes Lipinski V; Vaz Peres L; Dos Santos CP; Zanini Cechin S; Jorge Schuch N; Kirsh Pinheiro D; da Silva Loreto EL
    Ecotoxicol Environ Saf; 2015 Aug; 118():190-198. PubMed ID: 25957080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of ozone mini-holes on the heterogeneous destruction of stratospheric ozone.
    Stenke A; Grewe V
    Chemosphere; 2003 Jan; 50(2):177-90. PubMed ID: 12653290
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ozone depletion: ultraviolet radiation and phytoplankton biology in antarctic waters.
    Smith RC; Prézelin BB; Baker KS; Bidigare RR; Boucher NP; Coley T; Karentz D; MacIntyre S; Matlick HA; Menzies D
    Science; 1992 Feb; 255(5047):952-9. PubMed ID: 1546292
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Climate change enhances primary production in the western Antarctic Peninsula.
    Moreau S; Mostajir B; Bélanger S; Schloss IR; Vancoppenolle M; Demers S; Ferreyra GA
    Glob Chang Biol; 2015 Jun; 21(6):2191-205. PubMed ID: 25626857
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015.
    United Nations Environment Programme, Environmental Effects Assessment Panel
    Photochem Photobiol Sci; 2016 Feb; 15(2):141-74. PubMed ID: 26822392
    [TBL] [Abstract][Full Text] [Related]  

  • 59. UV-B radiation arising from stratospheric ozone depletion influences the pigmentation of the Antarctic moss Andreaea regularis.
    Newsham KK
    Oecologia; 2003 May; 135(3):327-31. PubMed ID: 12721820
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation.
    Lister KN; Lamare MD; Burritt DJ
    J Exp Biol; 2010 Jun; 213(11):1967-75. PubMed ID: 20472784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.