These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31686081)

  • 1. Enhancement and anticipation of the Ioffe-Regel crossover in amorphous/nanocrystalline composites.
    Tlili A; Giordano VM; Beltukov YM; Desmarchelier P; Merabia S; Tanguy A
    Nanoscale; 2019 Nov; 11(44):21502-21512. PubMed ID: 31686081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagative and diffusive regimes of acoustic damping in bulk amorphous material.
    Beltukov YM; Parshin DA; Giordano VM; Tanguy A
    Phys Rev E; 2018 Aug; 98(2-1):023005. PubMed ID: 30253567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ballistic Heat Transport in Nanocomposite: The Role of the Shape and Interconnection of Nanoinclusions.
    Desmarchelier P; Carré A; Termentzidis K; Tanguy A
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glass-Like Phonon Dynamics and Thermal Transport in a GeTe Nano-Composite at Low Temperature.
    Cravero R; Tlili A; Paterson J; Tomelleri M; Marcello P; Debord R; Pailhès S; Bourgeois O; Hippert F; Le Qui D; Raty JY; Noe P; Giordano VM
    Small; 2024 Jun; 20(26):e2310209. PubMed ID: 38634392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals.
    Luo Y; Yang X; Feng T; Wang J; Ruan X
    Nat Commun; 2020 May; 11(1):2554. PubMed ID: 32444680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaching the alloy limit of thermal conductivity in single-crystalline Si-based thermoelectric nanocomposites: A molecular dynamics investigation.
    Guo R; Huang B
    Sci Rep; 2015 Apr; 5():9579. PubMed ID: 25851401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boson peak and Ioffe-Regel criterion in amorphous siliconlike materials: The effect of bond directionality.
    Beltukov YM; Fusco C; Parshin DA; Tanguy A
    Phys Rev E; 2016 Feb; 93(2):023006. PubMed ID: 26986404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Surface Functionalization and Physical Properties of Nanoinclusions on Thermal Conductivity Enhancement in an Organic Phase Change Material.
    Mishra AK; Lahiri BB; Philip J
    ACS Omega; 2018 Aug; 3(8):9487-9504. PubMed ID: 31459082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon transport properties of particulate physical gels.
    Mizuno H; Hachiya M; Ikeda A
    J Chem Phys; 2022 May; 156(20):204505. PubMed ID: 35649873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced thermal conductivity in percolating nanocomposites: a molecular dynamics investigation.
    Termentzidis K; Giordano VM; Katsikini M; Paloura E; Pernot G; Verdier M; Lacroix D; Karakostas I; Kioseoglou J
    Nanoscale; 2018 Nov; 10(46):21732-21741. PubMed ID: 30431041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonons, Localization, and Thermal Conductivity of Diamond Nanothreads and Amorphous Graphene.
    Zhu T; Ertekin E
    Nano Lett; 2016 Aug; 16(8):4763-72. PubMed ID: 27388115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal link between the boson peak and transverse phonons in glass.
    Shintani H; Tanaka H
    Nat Mater; 2008 Nov; 7(11):870-7. PubMed ID: 18849975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal conductivity of suspended few-layer MoS
    Aiyiti A; Hu S; Wang C; Xi Q; Cheng Z; Xia M; Ma Y; Wu J; Guo J; Wang Q; Zhou J; Chen J; Xu X; Li B
    Nanoscale; 2018 Feb; 10(6):2727-2734. PubMed ID: 29319085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport in model copper-polyethylene interfaces.
    Ren Y; Wu K; Coker DF; Quirke N
    J Chem Phys; 2019 Nov; 151(17):174708. PubMed ID: 31703489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From amorphous to nanocrystalline: the effect of nanograins in an amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films.
    Kearney BT; Jugdersuren B; Queen DR; Metcalf TH; Culbertson JC; Desario PA; Stroud RM; Nemeth W; Wang Q; Liu X
    J Phys Condens Matter; 2018 Feb; 30(8):085301. PubMed ID: 29283107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide.
    Lv W; Henry A
    Sci Rep; 2016 Oct; 6():35720. PubMed ID: 27767082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure.
    Tambo N; Liao Y; Zhou C; Ashley EM; Takahashi K; Nealey PF; Naito Y; Shiomi J
    Sci Adv; 2020 Sep; 6(39):. PubMed ID: 32978150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing thermal transport across amorphous region embedded in a single crystalline silicon nanowire.
    Zhao Y; Liu X; Rath A; Wu J; Li B; Zhou W; Xie G; Zhang G; Thong JTL
    Sci Rep; 2020 Jan; 10(1):821. PubMed ID: 31964924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics of phonon-polaritons in amorphous materials.
    Casella L; Baggioli M; Mori T; Zaccone A
    J Chem Phys; 2021 Jan; 154(1):014501. PubMed ID: 33412881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into Thermal Transport through Molecular π-Stacking.
    Takehara R; Kubo N; Ryu M; Kitani S; Imajo S; Shoji Y; Kawaji H; Morikawa J; Fukushima T
    J Am Chem Soc; 2023 Oct; 145(40):22115-22121. PubMed ID: 37756122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.