These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31686133)

  • 1. The use of evoked potentials to determine sensory sub-modality contributions to acoustic and hydrodynamic sensing.
    Kibele CS; Montgomery JC; Radford CA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Dec; 205(6):855-865. PubMed ID: 31686133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus).
    Yoshizawa M; Jeffery WR; van Netten SM; McHenry MJ
    J Exp Biol; 2014 Mar; 217(Pt 6):886-95. PubMed ID: 24265419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mexican blind cavefish use mouth suction to detect obstacles.
    Holzman R; Perkol-Finkel S; Zilman G
    J Exp Biol; 2014 Jun; 217(Pt 11):1955-62. PubMed ID: 24675558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterior lateral line nerve encoding to tones and play-back vocalisations in free-swimming oyster toadfish, Opsanus tau.
    Radford CA; Mensinger AF
    J Exp Biol; 2014 May; 217(Pt 9):1570-9. PubMed ID: 24501136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lateral line is necessary for blind cavefish rheotaxis in non-uniform flow.
    Kulpa M; Bak-Coleman J; Coombs S
    J Exp Biol; 2015 May; 218(Pt 10):1603-12. PubMed ID: 25827837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lateral line system is not necessary for rheotaxis in the Mexican blind cavefish (Astyanax fasciatus).
    Van Trump WJ; McHenry MJ
    Integr Comp Biol; 2013 Nov; 53(5):799-809. PubMed ID: 23722083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lateral line confers evolutionarily derived sleep loss in the Mexican cavefish.
    Jaggard J; Robinson BG; Stahl BA; Oh I; Masek P; Yoshizawa M; Keene AC
    J Exp Biol; 2017 Jan; 220(Pt 2):284-293. PubMed ID: 28100806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Potential Overlapping Roles of the Ear and Lateral Line in Driving "Acoustic" Responses.
    Higgs DM; Radford CA
    Adv Exp Med Biol; 2016; 877():255-70. PubMed ID: 26515318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary convergence of a neural mechanism in the cavefish lateral line system.
    Lunsford ET; Paz A; Keene AC; Liao JC
    Elife; 2022 Jun; 11():. PubMed ID: 35708234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes.
    Butler JM; Field KE; Maruska KP
    PLoS One; 2016; 11(7):e0159521. PubMed ID: 27416112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oscar, Astronotus ocellatus, detects and discriminates dipole stimuli with the lateral line system.
    Mogdans J; Nauroth IE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Oct; 197(10):959-68. PubMed ID: 21667267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The overlapping roles of the inner ear and lateral line: the active space of dipole source detection.
    Braun CB; Coombs S
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1115-9. PubMed ID: 11079381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent and motoneuron activity in response to single neuromast stimulation in the posterior lateral line of larval zebrafish.
    Haehnel-Taguchi M; Akanyeti O; Liao JC
    J Neurophysiol; 2014 Sep; 112(6):1329-39. PubMed ID: 24966296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of turbulence on the sensory basis of rheotaxis.
    Elder J; Coombs S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jul; 201(7):667-80. PubMed ID: 25994410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential role of the anterior lateral line in sound localization in toadfish (
    Cardinal EA; Radford CA; Mensinger AF
    J Exp Biol; 2018 Nov; 221(Pt 23):. PubMed ID: 30266783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.
    Schwalbe MA; Sevey BJ; Webb JF
    J Exp Biol; 2016 Apr; 219(Pt 7):1050-9. PubMed ID: 27030780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical filtering by the boundary layer and fluid-structure interaction in the superficial neuromast of the fish lateral line system.
    McHenry MJ; Strother JA; van Netten SM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):795-810. PubMed ID: 18709377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Transfer Characteristics of Hair Cells Encoding Mechanical Stimuli in the Lateral Line of Zebrafish.
    Pichler P; Lagnado L
    J Neurosci; 2019 Jan; 39(1):112-124. PubMed ID: 30413644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gentamicin is ototoxic to all hair cells in the fish lateral line system.
    Van Trump WJ; Coombs S; Duncan K; McHenry MJ
    Hear Res; 2010 Mar; 261(1-2):42-50. PubMed ID: 20060460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.
    Goulet J; van Hemmen JL; Jung SN; Chagnaud BP; Scholze B; Engelmann J
    J Neurophysiol; 2012 May; 107(10):2581-93. PubMed ID: 22378175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.