BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 31686142)

  • 21. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.
    Mishra P; Lee NR; Lakshmanan M; Kim M; Kim BG; Lee DY
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):12. PubMed ID: 29560822
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Gao Q; Yang JL; Zhao XR; Liu SC; Liu ZJ; Wei LJ; Hua Q
    J Agric Food Chem; 2020 Sep; 68(39):10730-10740. PubMed ID: 32896122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization.
    Gao Q; Cao X; Huang YY; Yang JL; Chen J; Wei LJ; Hua Q
    ACS Synth Biol; 2018 May; 7(5):1371-1380. PubMed ID: 29694786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica.
    Soong YV; Coleman SM; Liu N; Qin J; Lawton C; Alper HS; Xie D
    Biotechnol Adv; 2023; 65():108128. PubMed ID: 36921878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-omics view of recombinant Yarrowia lipolytica: Enhanced ketogenic amino acid catabolism increases polyketide-synthase-driven docosahexaenoic production to high selectivity at the gram scale.
    Jovanovic Gasovic S; Dietrich D; Gläser L; Cao P; Kohlstedt M; Wittmann C
    Metab Eng; 2023 Nov; 80():45-65. PubMed ID: 37683719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioengineering of oleaginous yeast Yarrowia lipolytica for lycopene production.
    Ye RW; Sharpe PL; Zhu Q
    Methods Mol Biol; 2012; 898():153-9. PubMed ID: 22711123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthetic Biology Expands the Industrial Potential of Yarrowia lipolytica.
    Markham KA; Alper HS
    Trends Biotechnol; 2018 Oct; 36(10):1085-1095. PubMed ID: 29880228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systems-level approaches for understanding and engineering of the oleaginous cell factory Yarrowia lipolytica.
    Poorinmohammad N; Kerkhoven EJ
    Biotechnol Bioeng; 2021 Oct; 118(10):3640-3654. PubMed ID: 34129240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic Engineering of
    Zhang TL; Yu HW; Ye LD
    ACS Synth Biol; 2023 Mar; 12(3):639-656. PubMed ID: 36867718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oleaginous yeast for biofuel and oleochemical production.
    Spagnuolo M; Yaguchi A; Blenner M
    Curr Opin Biotechnol; 2019 Jun; 57():73-81. PubMed ID: 30875587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Yarrowia lipolytica towards food waste bioremediation: Production of fatty acid ethyl esters from vegetable cooking oil.
    Ng TK; Yu AQ; Ling H; Pratomo Juwono NK; Choi WJ; Leong SSJ; Chang MW
    J Biosci Bioeng; 2020 Jan; 129(1):31-40. PubMed ID: 31320262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increasing medium chain fatty acids production in Yarrowia lipolytica by metabolic engineering.
    Rigouin C; Croux C; Borsenberger V; Ben Khaled M; Chardot T; Marty A; Bordes F
    Microb Cell Fact; 2018 Sep; 17(1):142. PubMed ID: 30200978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering Yarrowia lipolytica for production of medium-chain fatty acids.
    Rutter CD; Zhang S; Rao CV
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7359-68. PubMed ID: 26129951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in biotechnological production of polyunsaturated fatty acids by
    Jia YL; Wang LR; Zhang ZX; Gu Y; Sun XM
    Crit Rev Food Sci Nutr; 2022; 62(32):8920-8934. PubMed ID: 34120537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy.
    Palmer CM; Miller KK; Nguyen A; Alper HS
    Metab Eng; 2020 Jan; 57():174-181. PubMed ID: 31740389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica.
    Shi S; Ji H; Siewers V; Nielsen J
    FEMS Yeast Res; 2016 Feb; 16(1):fov108. PubMed ID: 26658002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding and Eliminating the Detrimental Effect of Thiamine Deficiency on the Oleaginous Yeast Yarrowia lipolytica.
    Walker C; Ryu S; Giannone RJ; Garcia S; Trinh CT
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31704686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica.
    Wasylenko TM; Ahn WS; Stephanopoulos G
    Metab Eng; 2015 Jul; 30():27-39. PubMed ID: 25747307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering
    Wang K; Shi TQ; Lin L; Wei P; Ledesma-Amaro R; Ji XJ
    ACS Synth Biol; 2022 Aug; 11(8):2564-2577. PubMed ID: 35912582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.