These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3168635)

  • 1. Individual differences in infants' information processing: reliability, stability, and prediction.
    Rose SA; Feldman JF; Wallace IF
    Child Dev; 1988 Oct; 59(5):1177-97. PubMed ID: 3168635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Information processing in seven-month-old infants as a function of risk status.
    Rose SA; Feldman JF; McCarton CM; Wolfson J
    Child Dev; 1988 Jun; 59(3):589-603. PubMed ID: 3383669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual recognition memory: a predictor of later cognitive functioning in preterms.
    Rose SA; Wallace IF
    Child Dev; 1985 Aug; 56(4):843-52. PubMed ID: 4042748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of five-year Stanford-Binet scores in preterm infants.
    Cohen SE; Parmelee AH
    Child Dev; 1983 Oct; 54(5):1242-53. PubMed ID: 6354631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attention and recognition memory in the 1st year of life: a longitudinal study of preterm and full-term infants.
    Rose SA; Feldman JF; Jankowski JJ
    Dev Psychol; 2001 Jan; 37(1):135-51. PubMed ID: 11206428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential rates of visual information processing in full-term and preterm infants.
    Rose SA
    Child Dev; 1983 Oct; 54(5):1189-98. PubMed ID: 6354626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preterm infants' manipulative exploration of objects.
    Ruff HA; McCarton C; Kurtzberg D; Vaughan HG
    Child Dev; 1984 Aug; 55(4):1166-73. PubMed ID: 6488951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Memory and speed: their role in the relation of infant information processing to later IQ.
    Rose SA; Feldman JF
    Child Dev; 1997 Aug; 68(4):630-41. PubMed ID: 9306643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal prediction of specific cognitive abilities from infant novelty preference.
    Thompson LA; Fagan JF; Fulker DW
    Child Dev; 1991 Jun; 62(3):530-8. PubMed ID: 1914623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproductive, perinatal, and environmental factors as predictors of the cognitive and language development of preterm and full-term infants.
    Siegel LS
    Child Dev; 1982 Aug; 53(4):963-73. PubMed ID: 6181941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uses of Rasch scaling in the measurement of cognitive development and growth.
    Roid GH; Woodcock RW
    J Outcome Meas; 2000; 4(2):579-94. PubMed ID: 11272618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adolescent mothers and their children: changes in maternal characteristics and child developmental and behavioral outcome at school age.
    Camp BW
    J Dev Behav Pediatr; 1996 Jun; 17(3):162-9. PubMed ID: 8783062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A meta-analysis of infant habituation and recognition memory performance as predictors of later IQ.
    McCall RB; Carriger MS
    Child Dev; 1993 Feb; 64(1):57-79. PubMed ID: 8436038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproductive, perinatal, and environmental variables as predictors of development of preterm (less than 1501 grams) and fullterm children at 5 years.
    Siegel LS
    Semin Perinatol; 1982 Oct; 6(4):274-9. PubMed ID: 7156984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction for prematurity and its consequences for the assessment of the very low birth weight infant.
    Siegel LS
    Child Dev; 1983 Oct; 54(5):1176-88. PubMed ID: 6194943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of visual impairment on measures of cognitive function for children with congenital toxoplasmosis: implications for compensatory intervention strategies.
    Roizen N; Kasza K; Karrison T; Mets M; Noble AG; Boyer K; Swisher C; Meier P; Remington J; Jalbrzikowski J; McLeod R; Kipp M; Rabiah P; Chamot D; Estes R; Cezar S; Mack D; Pfiffner L; Stein M; Danis B; Patel D; Hopkins J; Holfels E; Stein L; Withers S; Cameron A; Perkins J; Heydemann P
    Pediatrics; 2006 Aug; 118(2):e379-90. PubMed ID: 16864640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. International collaborative study of intracytoplasmic sperm injection-conceived, in vitro fertilization-conceived, and naturally conceived 5-year-old child outcomes: cognitive and motor assessments.
    Ponjaert-Kristoffersen I; Bonduelle M; Barnes J; Nekkebroeck J; Loft A; Wennerholm UB; Tarlatzis BC; Peters C; Hagberg BS; Berner A; Sutcliffe AG
    Pediatrics; 2005 Mar; 115(3):e283-9. PubMed ID: 15741353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Memory and processing speed in preterm children at eleven years: a comparison with full-terms.
    Rose SA; Feldman JF
    Child Dev; 1996 Oct; 67(5):2005-21. PubMed ID: 9022226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistency and change in the development of premature infants weighing less than 1,501 grams at birth.
    Ross G; Lipper EG; Auld PA
    Pediatrics; 1985 Dec; 76(6):885-91. PubMed ID: 4069857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive development in low risk preterm infants at 3-4 years of life.
    Caravale B; Tozzi C; Albino G; Vicari S
    Arch Dis Child Fetal Neonatal Ed; 2005 Nov; 90(6):F474-9. PubMed ID: 15956096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.