These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31686498)

  • 1. Wet-Chemical Assembly of 2D Nanomaterials into Lightweight, Microtube-Shaped, and Macroscopic 3D Networks.
    Rasch F; Schütt F; Saure LM; Kaps S; Strobel J; Polonskyi O; Nia AS; Lohe MR; Mishra YK; Faupel F; Kienle L; Feng X; Adelung R
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44652-44663. PubMed ID: 31686498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene in macroscopic order: liquid crystals and wet-spun fibers.
    Xu Z; Gao C
    Acc Chem Res; 2014 Apr; 47(4):1267-76. PubMed ID: 24555686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor.
    Sari NP; Dutta D; Jamaluddin A; Chang JK; Su CY
    Phys Chem Chem Phys; 2017 Nov; 19(45):30381-30392. PubMed ID: 29119159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores.
    Xu Z; Zhang Y; Li P; Gao C
    ACS Nano; 2012 Aug; 6(8):7103-13. PubMed ID: 22799441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronous exfoliation and assembly of graphene on 3D Ni(OH)
    Ma L; Zheng M; Liu S; Li Q; You Y; Wang F; Ma L; Shen W
    Chem Commun (Camb); 2016 Nov; 52(91):13373-13376. PubMed ID: 27785503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From 2D Graphene Nanosheets to 3D Graphene-based Macrostructures.
    Mohd Firdaus R; Berrada N; Desforges A; Mohamed AR; Vigolo B
    Chem Asian J; 2020 Oct; 15(19):2902-2924. PubMed ID: 32779360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinodal Decomposition-Driven Structural Hierarchy of Mesoporous Inorganic Materials for Energy Applications.
    Ban M; Woo D; Hwang J; Kim S; Lee J
    Acc Chem Res; 2023 Dec; 56(23):3428-3440. PubMed ID: 37964510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores.
    Zhu C; Liu T; Qian F; Han TY; Duoss EB; Kuntz JD; Spadaccini CM; Worsley MA; Li Y
    Nano Lett; 2016 Jun; 16(6):3448-56. PubMed ID: 26789202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites.
    Han NM; Wang Z; Shen X; Wu Y; Liu X; Zheng Q; Kim TH; Yang J; Kim JK
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6580-6592. PubMed ID: 29388759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A facile route to fabricate thermally conductive and electrically insulating polymer composites with 3D interconnected graphene at an ultralow filler loading.
    Song S; Wang J; Liu C; Wang J; Zhang Y
    Nanoscale; 2019 Aug; 11(32):15234-15244. PubMed ID: 31385581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Design of Three-Dimensional Nitrogen-Doped Reduced Graphene Oxide/Multi-Walled Carbon Nanotube Composite Foams as Lightweight and Highly Efficient Microwave Absorbers.
    Shu R; Wan Z; Zhang J; Wu Y; Liu Y; Shi J; Zheng M
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4689-4698. PubMed ID: 31889438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PolyHIPE foams from pristine graphene: Strong, porous, and electrically conductive materials templated by a 2D surfactant.
    Brown EEB; Woltornist SJ; Adamson DH
    J Colloid Interface Sci; 2020 Nov; 580():700-708. PubMed ID: 32712476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing 3D Graphene Networks in Polymer Composites for Significantly Improved Electrical and Mechanical Properties.
    Wang P; Chong H; Zhang J; Lu H
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):22006-22017. PubMed ID: 28603965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanowire-Mesh-Templated Growth of Out-of-Plane Three-Dimensional Fuzzy Graphene.
    Garg R; Rastogi SK; Lamparski M; de la Barrera SC; Pace GT; Nuhfer NT; Hunt BM; Meunier V; Cohen-Karni T
    ACS Nano; 2017 Jun; 11(6):6301-6311. PubMed ID: 28549215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates.
    Hu C; Zhai X; Liu L; Zhao Y; Jiang L; Qu L
    Sci Rep; 2013; 3():2065. PubMed ID: 23799368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion.
    Shi Q; Cha Y; Song Y; Lee JI; Zhu C; Li X; Song MK; Du D; Lin Y
    Nanoscale; 2016 Aug; 8(34):15414-47. PubMed ID: 27531643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretchable All-Gel-State Fiber-Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels.
    Li P; Jin Z; Peng L; Zhao F; Xiao D; Jin Y; Yu G
    Adv Mater; 2018 May; 30(18):e1800124. PubMed ID: 29582483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel and facile synthesis approach for a porous carbon/graphene composite for high-performance supercapacitors.
    Liu T; Zhang X; Liu K; Liu Y; Liu M; Wu W; Gu Y; Zhang R
    Nanotechnology; 2018 Mar; 29(9):095401. PubMed ID: 29300179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of 3D hierarchical porous NiO@carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries.
    Wang X; Zhang L; Zhang Z; Yu A; Wu P
    Phys Chem Chem Phys; 2016 Feb; 18(5):3893-9. PubMed ID: 26765651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.