These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31686499)

  • 1. Helix N-Cap Residues Drive the Acid Unfolding That Is Essential in the Action of the Toxin Colicin A.
    Huang Y; Soliakov A; Le Brun AP; Macdonald C; Johnson CL; Solovyova AS; Waller H; Moore GR; Lakey JH
    Biochemistry; 2019 Dec; 58(48):4882-4892. PubMed ID: 31686499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different sensitivities to acid denaturation within a family of proteins: implications for acid unfolding and membrane translocation.
    Evans LJ; Goble ML; Hales KA; Lakey JH
    Biochemistry; 1996 Oct; 35(40):13180-5. PubMed ID: 8855956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colicin E1 forms a dimer after urea-induced unfolding.
    Steer BA; DiNardo AA; Merrill AR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):631-8. PubMed ID: 10359646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface aspartate residues are essential for the stability of colicin A P-domain: a mechanism for the formation of an acidic molten-globule.
    Fridd SL; Lakey JH
    Biochemistry; 2002 Feb; 41(5):1579-86. PubMed ID: 11814351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural stability and domain organization of colicin E1.
    Griko YV; Zakharov SD; Cramer WA
    J Mol Biol; 2000 Sep; 302(4):941-53. PubMed ID: 10993734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calorimetric investigations of the structural stability and interactions of colicin B domains in aqueous solution and in the presence of phospholipid bilayers.
    Ortega A; Lambotte S; Bechinger B
    J Biol Chem; 2001 Apr; 276(17):13563-72. PubMed ID: 11278359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
    Elkins P; Bunker A; Cramer WA; Stauffacher CV
    Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-dependent stability and membrane interaction of the pore-forming domain of colicin A.
    Muga A; Gonzalez-Manas JM; Lakey JH; Pattus F; Surewicz WK
    J Biol Chem; 1993 Jan; 268(3):1553-7. PubMed ID: 7678407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study.
    Lakey JH; Massotte D; Heitz F; Dasseux JL; Faucon JF; Parker MW; Pattus F
    Eur J Biochem; 1991 Mar; 196(3):599-607. PubMed ID: 2013283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guanidine hydrochloride induced equilibrium unfolding studies of colicin B and its channel-forming fragment.
    Sathish HA; Cusan M; Aisenbrey C; Bechinger B
    Biochemistry; 2002 Apr; 41(17):5340-7. PubMed ID: 11969394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation of the closed channel state of colicin A in proteoliposomes: an umbrella model.
    Padmavathi PV; Steinhoff HJ
    J Mol Biol; 2008 Apr; 378(1):204-14. PubMed ID: 18353363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A natively unfolded toxin domain uses its receptor as a folding template.
    Anderluh G; Gökçe I; Lakey JH
    J Biol Chem; 2004 May; 279(21):22002-9. PubMed ID: 15004032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The TolA-recognition site of colicin N. ITC, SPR and stopped-flow fluorescence define a crucial 27-residue segment.
    Gokce I; Raggett EM; Hong Q; Virden R; Cooper A; Lakey JH
    J Mol Biol; 2000 Dec; 304(4):621-32. PubMed ID: 11099384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a colicin N fragment suggests a model for toxicity.
    Vetter IR; Parker MW; Tucker AD; Lakey JH; Pattus F; Tsernoglou D
    Structure; 1998 Jul; 6(7):863-74. PubMed ID: 9687368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular basis for the pH-activation mechanism in the channel-forming bacterial colicin E1.
    Musse AA; Merrill AR
    J Biol Chem; 2003 Jul; 278(27):24491-9. PubMed ID: 12714593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folded state of the integral membrane colicin E1 immunity protein in solvents of mixed polarity.
    Taylor RM; Zakharov SD; Bernard Heymann J; Girvin ME; Cramer WA
    Biochemistry; 2000 Oct; 39(40):12131-9. PubMed ID: 11015191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change of thermal stability of colicin E7 triggered by acidic pH suggests the existence of unfolded intermediate during the membrane-translocation phase.
    Chak KF; Hsieh SY; Liao CC; Kan L
    Proteins; 1998 Jul; 32(1):17-25. PubMed ID: 9672039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolding pathway of the colicin E1 channel protein on a membrane surface.
    Lindeberg M; Zakharov SD; Cramer WA
    J Mol Biol; 2000 Jan; 295(3):679-92. PubMed ID: 10623556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational changes of urea-denatured colicin E1 induced by phospholipid membranes.
    Wu Y; Sui SF
    J Pept Res; 1999 May; 53(5):477-85. PubMed ID: 10424341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.