BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31686512)

  • 1. Amphiphilic Polypeptoids Rupture Vesicle Bilayers To Form Peptoid-Lipid Fragments Effective in Enhancing Hydrophobic Drug Delivery.
    Zhang Y; Heidari Z; Su Y; Yu T; Xuan S; Omarova M; Aydin Y; Dash S; Zhang D; John V
    Langmuir; 2019 Nov; 35(47):15335-15343. PubMed ID: 31686512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilic Polypeptoids Serve as the Connective Glue to Transform Liposomes into Multilamellar Structures with Closely Spaced Bilayers.
    Zhang Y; Xuan S; Owoseni O; Omarova M; Li X; Saito ME; He J; McPherson GL; Raghavan SR; Zhang D; John VT
    Langmuir; 2017 Mar; 33(11):2780-2789. PubMed ID: 28248521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobe Containing Polypeptoids Complex with Lipids and Induce Fusogenesis of Lipid Vesicles.
    Omarova M; Zhang Y; Mkam Tsengam IK; He J; Yu T; Zhang D; John V
    J Phys Chem B; 2021 Apr; 125(12):3145-3152. PubMed ID: 33730500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering the edge chemistry of bicelles with peptoids.
    Najafi H; Servoss SL
    Chem Phys Lipids; 2018 Dec; 217():43-50. PubMed ID: 30391486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers.
    Gao J; Zhang O; Ren J; Wu C; Zhao Y
    Langmuir; 2016 Feb; 32(6):1601-10. PubMed ID: 26794292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid bilayer fragments and disks in drug delivery.
    Carmona-Ribeiro AM
    Curr Med Chem; 2006; 13(12):1359-70. PubMed ID: 16719782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant-induced leakage from liposomes: a comparison among different lecithin vesicles.
    Memoli A; Annesini MC; Petralito S
    Int J Pharm; 1999 Jul; 184(2):227-35. PubMed ID: 10387952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivery of siRNA Complexed with Palmitoylated α-Peptide/β-Peptoid Cell-Penetrating Peptidomimetics: Membrane Interaction and Structural Characterization of a Lipid-Based Nanocarrier System.
    Jing X; Foged C; Martin-Bertelsen B; Yaghmur A; Knapp KM; Malmsten M; Franzyk H; Nielsen HM
    Mol Pharm; 2016 Jun; 13(6):1739-49. PubMed ID: 26654841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials chemistry: Liposomes derived from molecular vases.
    Safinya CR; Ewert KK
    Nature; 2012 Sep; 489(7416):372-4. PubMed ID: 22996547
    [No Abstract]   [Full Text] [Related]  

  • 10. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein.
    Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of membrane softeners on rigidity of lipid vesicle bilayers: Derivation from vesicle size changes.
    Elsayed MMA; Ibrahim MM; Cevc G
    Chem Phys Lipids; 2018 Jan; 210():98-108. PubMed ID: 29107604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Structure and Hydration of Sequence-Specific Amphiphilic Polypeptoids for Antifouling/Fouling Release Applications.
    Leng C; Buss HG; Segalman RA; Chen Z
    Langmuir; 2015 Sep; 31(34):9306-11. PubMed ID: 26245923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition from unilamellar to bilamellar vesicles induced by an amphiphilic biopolymer.
    Lee JH; Agarwal V; Bose A; Payne GF; Raghavan SR
    Phys Rev Lett; 2006 Feb; 96(4):048102. PubMed ID: 16486898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid Vesicle Interaction with Hydrophobic Surfaces: A Coarse-Grained Molecular Dynamics Study.
    Mannelli I; Sagués F; Pruneri V; Reigada R
    Langmuir; 2016 Dec; 32(48):12632-12640. PubMed ID: 27808519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.
    Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J
    Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes.
    Van Lehn RC; Ricci M; Silva PH; Andreozzi P; Reguera J; Voïtchovsky K; Stellacci F; Alexander-Katz A
    Nat Commun; 2014 Jul; 5():4482. PubMed ID: 25042518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Characterization of Cleavable Core-Cross-Linked Micelles Based on Amphiphilic Block Copolypeptoids as Smart Drug Carriers.
    Li A; Zhang D
    Biomacromolecules; 2016 Mar; 17(3):852-61. PubMed ID: 26866458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a bolaamphiphile on the structure of phosphatidylcholine liposomes.
    Gu Q; Zou A; Yuan C; Guo R
    J Colloid Interface Sci; 2003 Oct; 266(2):442-7. PubMed ID: 14527470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hydrophobic disordered peptide spontaneously anchors a covalently bound RNA hairpin to giant lipidic vesicles.
    Le Chevalier Isaad A; Carrara P; Stano P; Krishnakumar KS; Lafont D; Zamboulis A; Buchet R; Bouchu D; Albrieux F; Strazewski P
    Org Biomol Chem; 2014 Sep; 12(33):6363-73. PubMed ID: 24915577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.