These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 31686525)
1. A review of biochar-based sorbents for separation of heavy metals from water. Shakoor MB; Ali S; Rizwan M; Abbas F; Bibi I; Riaz M; Khalil U; Niazi NK; Rinklebe J Int J Phytoremediation; 2020; 22(2):111-126. PubMed ID: 31686525 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Li H; Dong X; da Silva EB; de Oliveira LM; Chen Y; Ma LQ Chemosphere; 2017 Jul; 178():466-478. PubMed ID: 28342995 [TBL] [Abstract][Full Text] [Related]
3. Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals. Zhang T; Zhu X; Shi L; Li J; Li S; Lü J; Li Y Bioresour Technol; 2017 Jul; 235():185-192. PubMed ID: 28365346 [TBL] [Abstract][Full Text] [Related]
4. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Xu X; Cao X; Zhao L Chemosphere; 2013 Aug; 92(8):955-61. PubMed ID: 23591132 [TBL] [Abstract][Full Text] [Related]
5. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature. Rodríguez-Vila A; Selwyn-Smith H; Enunwa L; Smail I; Covelo EF; Sizmur T Environ Sci Pollut Res Int; 2018 Mar; 25(8):7730-7739. PubMed ID: 29288302 [TBL] [Abstract][Full Text] [Related]
6. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Son EB; Poo KM; Chang JS; Chae KJ Sci Total Environ; 2018 Feb; 615():161-168. PubMed ID: 28964991 [TBL] [Abstract][Full Text] [Related]
7. Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Islam MS; Kwak JH; Nzediegwu C; Wang S; Palansuriya K; Kwon EE; Naeth MA; El-Din MG; Ok YS; Chang SX Environ Pollut; 2021 Jul; 281():117094. PubMed ID: 33848767 [TBL] [Abstract][Full Text] [Related]
8. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Singh E; Kumar A; Mishra R; You S; Singh L; Kumar S; Kumar R Bioresour Technol; 2021 Jan; 320(Pt A):124278. PubMed ID: 33099158 [TBL] [Abstract][Full Text] [Related]
9. Co-pyrolysis of biomass and phosphate tailing to produce potential phosphorus-rich biochar: efficient removal of heavy metals and the underlying mechanisms. Yang F; Lv J; Zhou Y; Wu S; Sima J Environ Sci Pollut Res Int; 2023 Feb; 30(7):17804-17816. PubMed ID: 36203042 [TBL] [Abstract][Full Text] [Related]
10. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Uchimiya M; Klasson KT; Wartelle LH; Lima IM Chemosphere; 2011 Mar; 82(10):1431-7. PubMed ID: 21147495 [TBL] [Abstract][Full Text] [Related]
11. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW Chemosphere; 2015 Sep; 134():257-62. PubMed ID: 25957037 [TBL] [Abstract][Full Text] [Related]
12. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. Mohamed BA; Ellis N; Kim CS; Bi X Environ Pollut; 2017 Nov; 230():329-338. PubMed ID: 28668594 [TBL] [Abstract][Full Text] [Related]
13. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars. Wang F; Sun H; Ren X; Liu Y; Zhu H; Zhang P; Ren C Environ Pollut; 2017 Dec; 231(Pt 1):229-236. PubMed ID: 28802992 [TBL] [Abstract][Full Text] [Related]
14. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131 [TBL] [Abstract][Full Text] [Related]
15. Adsorptive removal of toxic heavy metals from wastewater using water hyacinth and its biochar: A review. Ullah MH; Rahman MJ Heliyon; 2024 Sep; 10(17):e36869. PubMed ID: 39281482 [TBL] [Abstract][Full Text] [Related]
16. Treatment of aqueous arsenic - A review of biochar modification methods. Zoroufchi Benis K; Motalebi Damuchali A; Soltan J; McPhedran KN Sci Total Environ; 2020 Oct; 739():139750. PubMed ID: 32540652 [TBL] [Abstract][Full Text] [Related]
17. Biochar modification to enhance sorption of inorganics from water. Sizmur T; Fresno T; Akgül G; Frost H; Moreno-Jiménez E Bioresour Technol; 2017 Dec; 246():34-47. PubMed ID: 28781204 [TBL] [Abstract][Full Text] [Related]
18. Biochar-based adsorption for heavy metal removal in water: a sustainable and cost-effective approach. Bayar J; Ali N; Dong Y; Ahmad U; Anjum MM; Khan GR; Zaib M; Jalal A; Ali R; Ali L Environ Geochem Health; 2024 Sep; 46(11):428. PubMed ID: 39316301 [TBL] [Abstract][Full Text] [Related]
19. Application of biochar for the removal of pollutants from aqueous solutions. Tan X; Liu Y; Zeng G; Wang X; Hu X; Gu Y; Yang Z Chemosphere; 2015 Apr; 125():70-85. PubMed ID: 25618190 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials. Wang T; Sun H; Ren X; Li B; Mao H Ecotoxicol Environ Saf; 2018 Feb; 148():285-292. PubMed ID: 29080526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]