BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 31686525)

  • 1. A review of biochar-based sorbents for separation of heavy metals from water.
    Shakoor MB; Ali S; Rizwan M; Abbas F; Bibi I; Riaz M; Khalil U; Niazi NK; Rinklebe J
    Int J Phytoremediation; 2020; 22(2):111-126. PubMed ID: 31686525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.
    Li H; Dong X; da Silva EB; de Oliveira LM; Chen Y; Ma LQ
    Chemosphere; 2017 Jul; 178():466-478. PubMed ID: 28342995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals.
    Zhang T; Zhu X; Shi L; Li J; Li S; Lü J; Li Y
    Bioresour Technol; 2017 Jul; 235():185-192. PubMed ID: 28365346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars.
    Xu X; Cao X; Zhao L
    Chemosphere; 2013 Aug; 92(8):955-61. PubMed ID: 23591132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature.
    Rodríguez-Vila A; Selwyn-Smith H; Enunwa L; Smail I; Covelo EF; Sizmur T
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7730-7739. PubMed ID: 29288302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass.
    Son EB; Poo KM; Chang JS; Chae KJ
    Sci Total Environ; 2018 Feb; 615():161-168. PubMed ID: 28964991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas.
    Islam MS; Kwak JH; Nzediegwu C; Wang S; Palansuriya K; Kwon EE; Naeth MA; El-Din MG; Ok YS; Chang SX
    Environ Pollut; 2021 Jul; 281():117094. PubMed ID: 33848767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution.
    Singh E; Kumar A; Mishra R; You S; Singh L; Kumar S; Kumar R
    Bioresour Technol; 2021 Jan; 320(Pt A):124278. PubMed ID: 33099158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-pyrolysis of biomass and phosphate tailing to produce potential phosphorus-rich biochar: efficient removal of heavy metals and the underlying mechanisms.
    Yang F; Lv J; Zhou Y; Wu S; Sima J
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):17804-17816. PubMed ID: 36203042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations.
    Uchimiya M; Klasson KT; Wartelle LH; Lima IM
    Chemosphere; 2011 Mar; 82(10):1431-7. PubMed ID: 21147495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass.
    Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW
    Chemosphere; 2015 Sep; 134():257-62. PubMed ID: 25957037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil.
    Mohamed BA; Ellis N; Kim CS; Bi X
    Environ Pollut; 2017 Nov; 230():329-338. PubMed ID: 28668594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars.
    Wang F; Sun H; Ren X; Liu Y; Zhu H; Zhang P; Ren C
    Environ Pollut; 2017 Dec; 231(Pt 1):229-236. PubMed ID: 28802992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation.
    Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX
    Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of aqueous arsenic - A review of biochar modification methods.
    Zoroufchi Benis K; Motalebi Damuchali A; Soltan J; McPhedran KN
    Sci Total Environ; 2020 Oct; 739():139750. PubMed ID: 32540652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochar modification to enhance sorption of inorganics from water.
    Sizmur T; Fresno T; Akgül G; Frost H; Moreno-Jiménez E
    Bioresour Technol; 2017 Dec; 246():34-47. PubMed ID: 28781204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of biochar for the removal of pollutants from aqueous solutions.
    Tan X; Liu Y; Zeng G; Wang X; Hu X; Gu Y; Yang Z
    Chemosphere; 2015 Apr; 125():70-85. PubMed ID: 25618190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials.
    Wang T; Sun H; Ren X; Li B; Mao H
    Ecotoxicol Environ Saf; 2018 Feb; 148():285-292. PubMed ID: 29080526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment.
    Hassan M; Naidu R; Du J; Liu Y; Qi F
    Sci Total Environ; 2020 Feb; 702():134893. PubMed ID: 31733558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights of 2,4-D sorption onto biochar: Influence of feedstock materials and biochar properties.
    Mandal S; Sarkar B; Igalavithana AD; Ok YS; Yang X; Lombi E; Bolan N
    Bioresour Technol; 2017 Dec; 246():160-167. PubMed ID: 28756126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.