BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 31686549)

  • 1. The overall potential of CD47 in cancer immunotherapy: with a focus on gastrointestinal tumors.
    Tzatzarakis E; Hissa B; Reissfelder C; Schölch S
    Expert Rev Anticancer Ther; 2019 Nov; 19(11):993-999. PubMed ID: 31686549
    [No Abstract]   [Full Text] [Related]  

  • 2. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.
    Matlung HL; Szilagyi K; Barclay NA; van den Berg TK
    Immunol Rev; 2017 Mar; 276(1):145-164. PubMed ID: 28258703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer immunotherapy targeting the CD47/SIRPα axis.
    Weiskopf K
    Eur J Cancer; 2017 May; 76():100-109. PubMed ID: 28286286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is CD47 an innate immune checkpoint for tumor evasion?
    Liu X; Kwon H; Li Z; Fu YX
    J Hematol Oncol; 2017 Jan; 10(1):12. PubMed ID: 28077173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy.
    Li Z; Li Y; Gao J; Fu Y; Hua P; Jing Y; Cai M; Wang H; Tong T
    Life Sci; 2021 May; 273():119150. PubMed ID: 33662426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of small-molecule inhibitors targeting CD47.
    Yu WB; Ye ZH; Chen X; Shi JJ; Lu JJ
    Drug Discov Today; 2021 Feb; 26(2):561-568. PubMed ID: 33197622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD47 is a novel potent immunotherapy target in human malignancies: current studies and future promises.
    Tong B; Wang M
    Future Oncol; 2018 Sep; 14(21):2179-2188. PubMed ID: 29667847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the new angel better than the old devil? Challenges and opportunities in CD47- SIRPα-based cancer therapy.
    Olaoba OT; Ayinde KS; Lateef OM; Akintubosun MO; Lawal KA; Adelusi TI
    Crit Rev Oncol Hematol; 2023 Apr; 184():103939. PubMed ID: 36774991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells.
    Lian S; Xie R; Ye Y; Lu Y; Cheng Y; Xie X; Li S; Jia L
    Sci Rep; 2019 Mar; 9(1):4532. PubMed ID: 30872703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy.
    Logtenberg MEW; Jansen JHM; Raaben M; Toebes M; Franke K; Brandsma AM; Matlung HL; Fauster A; Gomez-Eerland R; Bakker NAM; van der Schot S; Marijt KA; Verdoes M; Haanen JBAG; van den Berg JH; Neefjes J; van den Berg TK; Brummelkamp TR; Leusen JHW; Scheeren FA; Schumacher TN
    Nat Med; 2019 Apr; 25(4):612-619. PubMed ID: 30833751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy.
    Wang H; Sun Y; Zhou X; Chen C; Jiao L; Li W; Gou S; Li Y; Du J; Chen G; Zhai W; Wu Y; Qi Y; Gao Y
    J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33020240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD47-signal regulatory protein α signaling system and its application to cancer immunotherapy.
    Murata Y; Saito Y; Kotani T; Matozaki T
    Cancer Sci; 2018 Aug; 109(8):2349-2357. PubMed ID: 29873856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CD47-SIRPα Immune Checkpoint.
    Logtenberg MEW; Scheeren FA; Schumacher TN
    Immunity; 2020 May; 52(5):742-752. PubMed ID: 32433947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Bispecific Antibody Derivatives for Cancer Immunotherapy.
    He Y; Helfrich W; Bremer E
    Methods Mol Biol; 2019; 1884():335-347. PubMed ID: 30465214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis.
    Koh E; Lee EJ; Nam GH; Hong Y; Cho E; Yang Y; Kim IS
    Biomaterials; 2017 Mar; 121():121-129. PubMed ID: 28086180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity.
    Ring NG; Herndler-Brandstetter D; Weiskopf K; Shan L; Volkmer JP; George BM; Lietzenmayer M; McKenna KM; Naik TJ; McCarty A; Zheng Y; Ring AM; Flavell RA; Weissman IL
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):E10578-E10585. PubMed ID: 29158380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade of CD47 or SIRPα: a new cancer immunotherapy.
    Murata Y; Saito Y; Kotani T; Matozaki T
    Expert Opin Ther Targets; 2020 Oct; 24(10):945-951. PubMed ID: 32799682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promising alternatives of CD47 monoclonal antibody: an injectable degradable hydrogel loaded with PQ912 for postoperative immunotherapy effectively blocks CD47-SIRPα signal.
    Li C; Liu Y; Li D; Wang Q; Zhou S; Zhang H; Wang Y; He Z; Liu H; Sun J
    Theranostics; 2022; 12(10):4581-4598. PubMed ID: 35832081
    [No Abstract]   [Full Text] [Related]  

  • 19. The Combination of Anti-CD47 Antibody with CTLA4 Blockade Enhances Anti-Tumor Immunity in Non-Small Cell Lung Cancer via Normalization of Tumor Vasculature and Reprogramming of the Immune Microenvironment.
    Zhuang Z; Zhou J; Qiu M; Li J; Lin Z; Yi H; Liu X; Huang C; Tang B; Liu B; Li X
    Cancers (Basel); 2024 Feb; 16(4):. PubMed ID: 38398223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SIRPα-Antibody Fusion Proteins Selectively Bind and Eliminate Dual Antigen-Expressing Tumor Cells.
    Piccione EC; Juarez S; Tseng S; Liu J; Stafford M; Narayanan C; Wang L; Weiskopf K; Majeti R
    Clin Cancer Res; 2016 Oct; 22(20):5109-5119. PubMed ID: 27126995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.