These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31686894)

  • 61. Synbiotic formulation of probiotic and lactulose combination for hepatic encephalopathy treatment: a realistic hope?
    Sekhar MS; Unnikrishnan MK; Rodrigues GS; Mukhopadhyay C
    Med Hypotheses; 2013 Aug; 81(2):167-8. PubMed ID: 23759357
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pathophysiology and management of hepatic encephalopathy 2014 update: Ammonia toxicity and hyponatremia.
    Iwasa M; Takei Y
    Hepatol Res; 2015 Dec; 45(12):1155-62. PubMed ID: 25604571
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Double-blind, double-dummy comparison between treatment with rifaximin and lactulose in patients with medium to severe degree hepatic encephalopathy.
    Bucci L; Palmieri GC
    Curr Med Res Opin; 1993; 13(2):109-18. PubMed ID: 8325041
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Plasma concentration of urea, ammonia, glutamine around calving, and the relation of hepatic triglyceride, to plasma ammonia removal and blood acid-base balance.
    Zhu LH; Armentano LE; Bremmer DR; Grummer RR; Bertics SJ
    J Dairy Sci; 2000 Apr; 83(4):734-40. PubMed ID: 10791789
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hepatic encephalopathy: Ever closer to its big bang.
    Souto PA; Marcotegui AR; Orbea L; Skerl J; Perazzo JC
    World J Gastroenterol; 2016 Nov; 22(42):9251-9256. PubMed ID: 27895414
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Introduction: understanding mechanisms of the actions of rifaximin in selected gastrointestinal diseases.
    DuPont HL
    Aliment Pharmacol Ther; 2016 Jan; 43 Suppl 1():1-2. PubMed ID: 26618920
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hepatic encephalopathy and Helicobacter pylori: a critical reappraisal.
    Zullo A; Hassan C; Morini S
    J Clin Gastroenterol; 2003 Aug; 37(2):164-8. PubMed ID: 12869889
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regulation of hepatic ammonia metabolism: the intercellular glutamine cycle.
    Häussinger D
    Adv Enzyme Regul; 1986; 25():159-80. PubMed ID: 2880476
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Post-feeding hyperammonaemia in patients with transjugular intrahepatic portosystemic shunt and liver cirrhosis: role of small intestinal ammonia release and route of nutrient administration.
    Plauth M; Roske AE; Romaniuk P; Roth E; Ziebig R; Lochs H
    Gut; 2000 Jun; 46(6):849-55. PubMed ID: 10807899
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantification of the capacity of the liver to remove ammonia from the circulation of dogs with portacaval transposition.
    Aldrete JS
    Surg Gynecol Obstet; 1975 Sep; 141(3):399-404. PubMed ID: 1162568
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hyperammonemia in gene-targeted mice lacking functional hepatic glutamine synthetase.
    Qvartskhava N; Lang PA; Görg B; Pozdeev VI; Ortiz MP; Lang KS; Bidmon HJ; Lang E; Leibrock CB; Herebian D; Bode JG; Lang F; Häussinger D
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5521-6. PubMed ID: 25870278
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ammonia and autophagy: An emerging relationship with implications for disorders with hyperammonemia.
    Soria LR; Brunetti-Pierri N
    J Inherit Metab Dis; 2019 Nov; 42(6):1097-1104. PubMed ID: 30671986
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Amino acid metabolism and the liver in renal failure.
    Tizianello A; De Ferrari G; Garibotto G; Robaudo C
    Am J Clin Nutr; 1980 Jul; 33(7):1354-62. PubMed ID: 7395763
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Colonic luminal ammonia and portal blood L-glutamine and L-arginine concentrations: a possible link between colon mucosa and liver ureagenesis.
    Eklou-Lawson M; Bernard F; Neveux N; Chaumontet C; Bos C; Davila-Gay AM; Tomé D; Cynober L; Blachier F
    Amino Acids; 2009 Oct; 37(4):751-60. PubMed ID: 19082688
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Organ Distribution of
    Cruz NF; Dienel GA; Patrick PA; Cooper AJL
    Neurochem Res; 2017 Jun; 42(6):1683-1696. PubMed ID: 27822667
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A randomized, double-blind, controlled trial comparing rifaximin plus lactulose with lactulose alone in treatment of overt hepatic encephalopathy.
    Sharma BC; Sharma P; Lunia MK; Srivastava S; Goyal R; Sarin SK
    Am J Gastroenterol; 2013 Sep; 108(9):1458-63. PubMed ID: 23877348
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose.
    Vince AJ; Burridge SM
    J Med Microbiol; 1980 May; 13(2):177-91. PubMed ID: 7381915
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Interorgan metabolism of ornithine phenylacetate (OP)--a novel strategy for treatment of hyperammonemia.
    Dadsetan S; Sørensen M; Bak LK; Vilstrup H; Ott P; Schousboe A; Jalan R; Keiding S; Waagepetersen HS
    Biochem Pharmacol; 2013 Jan; 85(1):115-23. PubMed ID: 23103564
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ammonia uptake by skeletal muscle in the hyperammonaemic rat.
    Hod G; Chaouat M; Haskel Y; Lernau OZ; Nissan S; Mayer M
    Eur J Clin Invest; 1982 Dec; 12(6):445-50. PubMed ID: 6129977
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Targeting autophagy for therapy of hyperammonemia.
    Soria LR; Brunetti-Pierri N
    Autophagy; 2018; 14(7):1273-1275. PubMed ID: 30035657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.