These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

865 related articles for article (PubMed ID: 31687085)

  • 1. The Signaling of Cellular Senescence in Diabetic Nephropathy.
    Xiong Y; Zhou L
    Oxid Med Cell Longev; 2019; 2019():7495629. PubMed ID: 31687085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy.
    Chen K; Dai H; Yuan J; Chen J; Lin L; Zhang W; Wang L; Zhang J; Li K; He Y
    Cell Death Dis; 2018 Jan; 9(2):105. PubMed ID: 29367621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy.
    Tung CW; Hsu YC; Shih YH; Chang PJ; Lin CL
    Nephrology (Carlton); 2018 Oct; 23 Suppl 4():32-37. PubMed ID: 30298646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt signaling and podocyte dysfunction in diabetic nephropathy.
    Bose M; Almas S; Prabhakar S
    J Investig Med; 2017 Dec; 65(8):1093-1101. PubMed ID: 28935636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiinflammatory Actions of Klotho: Implications for Therapy of Diabetic Nephropathy.
    Typiak M; Piwkowska A
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33478014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pathogenesis of diabetic nephropathy: focus on microRNAs and proteomics.
    Conserva F; Pontrelli P; Accetturo M; Gesualdo L
    J Nephrol; 2013; 26(5):811-20. PubMed ID: 23543479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective or deleterious role of Wnt/beta-catenin signaling in diabetic nephropathy: An unresolved issue.
    Guo Q; Zhong W; Duan A; Sun G; Cui W; Zhuang X; Liu L
    Pharmacol Res; 2019 Jun; 144():151-157. PubMed ID: 30935943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NR4A1 Promotes Diabetic Nephropathy by Activating Mff-Mediated Mitochondrial Fission and Suppressing Parkin-Mediated Mitophagy.
    Sheng J; Li H; Dai Q; Lu C; Xu M; Zhang J; Feng J
    Cell Physiol Biochem; 2018; 48(4):1675-1693. PubMed ID: 30077998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research progress in signalling pathway in diabetic nephropathy.
    Ni WJ; Tang LQ; Wei W
    Diabetes Metab Res Rev; 2015 Mar; 31(3):221-33. PubMed ID: 24898554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway.
    Huang C; Zhang Y; Kelly DJ; Tan CY; Gill A; Cheng D; Braet F; Park JS; Sue CM; Pollock CA; Chen XM
    Sci Rep; 2016 Jul; 6():29196. PubMed ID: 27381856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diabetic nephropathy: pathogenesis and treatment.
    Adler S; Nast C; Artishevsky A
    Annu Rev Med; 1993; 44():303-15. PubMed ID: 8476252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WT1 ameliorates podocyte injury via repression of EZH2/β-catenin pathway in diabetic nephropathy.
    Wan J; Hou X; Zhou Z; Geng J; Tian J; Bai X; Nie J
    Free Radic Biol Med; 2017 Jul; 108():280-299. PubMed ID: 28315733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inflammation and the pathogenesis of diabetic nephropathy.
    Wada J; Makino H
    Clin Sci (Lond); 2013 Feb; 124(3):139-52. PubMed ID: 23075333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adipose-Derived Mesenchymal Stem Cells Transplantation Alleviates Renal Injury in Streptozotocin-Induced Diabetic Nephropathy.
    Ni W; Fang Y; Xie L; Liu X; Shan W; Zeng R; Liu J; Liu X
    J Histochem Cytochem; 2015 Nov; 63(11):842-53. PubMed ID: 26215800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DUSP1 recuses diabetic nephropathy via repressing JNK-Mff-mitochondrial fission pathways.
    Sheng J; Li H; Dai Q; Lu C; Xu M; Zhang J; Feng J
    J Cell Physiol; 2019 Mar; 234(3):3043-3057. PubMed ID: 30191967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy.
    Elmarakby AA; Sullivan JC
    Cardiovasc Ther; 2012 Feb; 30(1):49-59. PubMed ID: 20718759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diabetic nephropathy: The regulatory interplay between epigenetics and microRNAs.
    Sankrityayan H; Kulkarni YA; Gaikwad AB
    Pharmacol Res; 2019 Mar; 141():574-585. PubMed ID: 30695734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of diabetic nephropathy--old buddies and newcomers part 1.
    Nawroth PP; Isermann B
    Exp Clin Endocrinol Diabetes; 2010 Oct; 118(9):571-6. PubMed ID: 20658438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflammatory cytokines in diabetic nephropathy.
    Donate-Correa J; Martín-Núñez E; Muros-de-Fuentes M; Mora-Fernández C; Navarro-González JF
    J Diabetes Res; 2015; 2015():948417. PubMed ID: 25785280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetics in the pathogenesis of diabetic nephropathy.
    Li X; Lu L; Hou W; Huang T; Chen X; Qi J; Zhao Y; Zhu M
    Acta Biochim Biophys Sin (Shanghai); 2022 Jan; 54(2):163-172. PubMed ID: 35130617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.