These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31687606)

  • 21. Influence of cold rolling on
    Caligari Conti M; Aquilina D; Paternoster C; Vella D; Sinagra E; Mantovani D; Cassar G; Schembri Wismayer P; Buhagiar J
    Heliyon; 2018 Nov; 4(11):e00926. PubMed ID: 30761362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microstructural Characterization of Al
    Geambazu LE; Tălpeanu D; Bololoi RV; Manea CA; Bololoi AE; Miculescu F; Pătroi D; Cojocaru VD
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing the degradation rate and biomineralization nature of antiferromagnetic Fe-20Mn alloy by groove pressing.
    Sahu MR; Sampath Kumar TS; Chakkingal U; Dewangan VK; Doble M
    J Biomed Mater Res A; 2024 Oct; 112(10):1646-1661. PubMed ID: 38560769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation behaviour of Fe-based alloys in Hanks' Balanced Salt Solutions: Part I. material characterisation and corrosion testing.
    Tonna C; Wang C; Mei D; Lamaka SV; Zheludkevich ML; Buhagiar J
    Bioact Mater; 2022 Jan; 7():426-440. PubMed ID: 34466743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.
    Liu Y; Li K; Luo T; Song M; Wu H; Xiao J; Tan Y; Cheng M; Chen B; Niu X; Hu R; Li X; Tang H
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():241-50. PubMed ID: 26249586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications.
    Alshammari Y; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2019 Mar; 91():391-397. PubMed ID: 30665199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of in vitro and in vivo biocompatibility of iron produced by powder metallurgy.
    Paim TC; Wermuth DP; Bertaco I; Zanatelli C; Naasani LIS; Slaviero M; Driemeier D; Schaeffer L; Wink MR
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111129. PubMed ID: 32600726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Modification of an Absorbable Bimodal Fe-Mn-Ag Alloy by Nitrogen Plasma Immersion Ion Implantation.
    Sotoudeh Bagha P; Paternoster C; Khakbiz M; Sheibani S; Gholami N; Mantovani D
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fe-Au and Fe-Ag composites as candidates for biodegradable stent materials.
    Huang T; Cheng J; Bian D; Zheng Y
    J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):225-40. PubMed ID: 25727071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.
    Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tensile Properties and Fracture Behaviour of Biodegradable Iron⁻Manganese Scaffolds Produced by Powder Sintering.
    Dehghan-Manshadi A; StJohn DH; Dargusch MS
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31091657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.
    Bolzoni L; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2017 Mar; 67():110-116. PubMed ID: 27988440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antibacterial biodegradable Mg-Ag alloys.
    Tie D; Feyerabend F; Müller WD; Schade R; Liefeith K; Kainer KU; Willumeit R
    Eur Cell Mater; 2013 Jun; 25():284-98; discussion 298. PubMed ID: 23771512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstructure and in vitro degradation performance of Mg-Zn-Mn alloys for biomedical application.
    Rosalbino F; De Negri S; Scavino G; Saccone A
    J Biomed Mater Res A; 2013 Mar; 101(3):704-11. PubMed ID: 22941918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the Microstructure and Compressibility of Biodegradable Fe-Mn-Cu/W/Co Nanostructured Alloy Powders Synthesized by Mechanical Alloying.
    Ammar HR; Sivasankaran S; Alaboodi AS
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing.
    Chou DT; Wells D; Hong D; Lee B; Kuhn H; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8593-603. PubMed ID: 23624222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Method for the determination of parameters in the sintering process of mixtures of the elemental powders Fe-Cr and Fe-Cr-Ni.
    Schneider TH; Biehl LV; das Neves EB; Medeiros JLB; de Souza J; do Amaral FAD
    MethodsX; 2019; 6():1919-1924. PubMed ID: 31516848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Mn on the Properties of Powder Metallurgy Ti-2.5Al-xMn Alloys.
    Alshammari Y; Mendoza S; Yang F; Bolzoni L
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current status and perspectives of zinc-based absorbable alloys for biomedical applications.
    Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H
    Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications.
    Agarwal S; Curtin J; Duffy B; Jaiswal S
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():948-963. PubMed ID: 27524097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.