These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31687804)

  • 1. Revealing the Metabolic Activity of Persisters in Mycobacteria by Single-Cell D
    Ueno H; Kato Y; Tabata KV; Noji H
    Anal Chem; 2019 Dec; 91(23):15171-15178. PubMed ID: 31687804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility.
    Aldridge BB; Fernandez-Suarez M; Heller D; Ambravaneswaran V; Irimia D; Toner M; Fortune SM
    Science; 2012 Jan; 335(6064):100-4. PubMed ID: 22174129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of rifampicin by Mycobacterium aurum, Mycobacterium smegmatis and Mycobacterium tuberculosis.
    Piddock LJ; Williams KJ; Ricci V
    J Antimicrob Chemother; 2000 Feb; 45(2):159-65. PubMed ID: 10660497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonquaternary poly(diallylammonium) polymers with different amine structure and their biocidal effect on Mycobacterium tuberculosis and Mycobacterium smegmatis.
    Timofeeva LM; Kleshcheva NA; Shleeva MO; Filatova MP; Simonova YA; Ermakov YA; Kaprelyants AS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2557-71. PubMed ID: 25557627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals.
    Grant SS; Kaufmann BB; Chand NS; Haseley N; Hung DT
    Proc Natl Acad Sci U S A; 2012 Jul; 109(30):12147-52. PubMed ID: 22778419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic-Activity-Based Assessment of Antimicrobial Effects by D
    Tao Y; Wang Y; Huang S; Zhu P; Huang WE; Ling J; Xu J
    Anal Chem; 2017 Apr; 89(7):4108-4115. PubMed ID: 28282113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the role of (p)ppGpp in mycobacterial persistence against antibiotics.
    Bhaskar A; De Piano C; Gelman E; McKinney JD; Dhar N
    IUBMB Life; 2018 Sep; 70(9):836-844. PubMed ID: 30092117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell Raman spectroscopy identifies
    Wang C; Chen R; Xu J; Jin L
    Front Microbiol; 2022; 13():936726. PubMed ID: 35992656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-Alanine specifically potentiates fluoroquinolone efficacy against Mycobacterium persisters via increased intracellular reactive oxygen species.
    Zhen J; Yan S; Li Y; Ruan C; Li Y; Li X; Zhao X; Lv X; Ge Y; Moure UAE; Xie J
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2137-2147. PubMed ID: 31940082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic system for long-term time-lapse microscopy studies of mycobacteria.
    Golchin SA; Stratford J; Curry RJ; McFadden J
    Tuberculosis (Edinb); 2012 Nov; 92(6):489-96. PubMed ID: 22954584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug susceptibility testing of mature Mycobacterium tuberculosis H37Ra and Mycobacterium smegmatis biofilms with calorimetry and laser spectroscopy.
    Solokhina A; Bonkat G; Kulchavenya E; Braissant O
    Tuberculosis (Edinb); 2018 Dec; 113():91-98. PubMed ID: 30514518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D
    Li HZ; Bi QF; Yang K; Zheng BX; Pu Q; Cui L
    Anal Chem; 2019 Feb; 91(3):2239-2246. PubMed ID: 30608659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ)-A cell division protein.
    Ravindran R; Chakrapani G; Mitra K; Doble M
    PLoS One; 2020; 15(5):e0232482. PubMed ID: 32357366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Antibiotic Susceptibility Testing of Pathogenic Bacteria Using Heavy-Water-Labeled Single-Cell Raman Spectroscopy in Clinical Samples.
    Yang K; Li HZ; Zhu X; Su JQ; Ren B; Zhu YG; Cui L
    Anal Chem; 2019 May; 91(9):6296-6303. PubMed ID: 30942570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise in a Metabolic Pathway Leads to Persister Formation in Mycobacterium tuberculosis.
    Quigley J; Lewis K
    Microbiol Spectr; 2022 Oct; 10(5):e0294822. PubMed ID: 36194154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic profiling of dormant Mycolicibacterium smegmatis cells' reactivation reveals a gradual assembly of metabolic processes.
    Nikitushkin VD; Trenkamp S; Demina GR; Shleeva MO; Kaprelyants AS
    Metabolomics; 2020 Feb; 16(2):24. PubMed ID: 32025943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic responses of indigenous bacteria in chicken faeces and maggots to multiple antibiotics via heavy water labeled single-cell Raman spectroscopy.
    Olaniyi OO; Li H; Zhu Y; Cui L
    J Environ Sci (China); 2022 Mar; 113():394-402. PubMed ID: 34963547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persister eradication: lessons from the world of natural products.
    Keren I; Mulcahy LR; Lewis K
    Methods Enzymol; 2012; 517():387-406. PubMed ID: 23084949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dormancy is not necessary or sufficient for bacterial persistence.
    Orman MA; Brynildsen MP
    Antimicrob Agents Chemother; 2013 Jul; 57(7):3230-9. PubMed ID: 23629720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resazurin reduction assays for screening of anti-tubercular compounds against dormant and actively growing Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis.
    Taneja NK; Tyagi JS
    J Antimicrob Chemother; 2007 Aug; 60(2):288-93. PubMed ID: 17586560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.