These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31688319)

  • 1. The Effect of Interphase Gap on Neural Response of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency and Children With Normal-Sized Cochlear Nerves.
    He S; Xu L; Skidmore J; Chao X; Jeng FC; Wang R; Luo J; Wang H
    Ear Hear; 2020; 41(4):918-934. PubMed ID: 31688319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Increasing Pulse Phase Duration on Neural Responsiveness of the Electrically Stimulated Cochlear Nerve.
    He S; Xu L; Skidmore J; Chao X; Riggs WJ; Wang R; Vaughan C; Luo J; Shannon M; Warner C
    Ear Hear; 2020; 41(6):1606-1618. PubMed ID: 33136636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Pulse Polarity on Neural Response of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency and Children With Normal-Sized Cochlear Nerves.
    Xu L; Skidmore J; Luo J; Chao X; Wang R; Wang H; He S
    Ear Hear; 2020; 41(5):1306-1319. PubMed ID: 32141933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responsiveness of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency.
    He S; Shahsavarani BS; McFayden TC; Wang H; Gill KE; Xu L; Chao X; Luo J; Wang R; He N
    Ear Hear; 2018; 39(2):238-250. PubMed ID: 28678078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of GJB2 or SLC26A4 Gene Mutations on Neural Response of the Electrically Stimulated Auditory Nerve in Children.
    Luo J; Xu L; Chao X; Wang R; Pellittieri A; Bai X; Fan Z; Wang H; He S
    Ear Hear; 2020; 41(1):194-207. PubMed ID: 31124793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Characteristics of responsiveness of cochlear nerve to electrical stimulation in patients with cochlear nerve deficiency].
    Chao XH; Luo JF; Wang RJ; Fan ZM; Wang HB; Xu L
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2023 Jul; 58(7):657-665. PubMed ID: 37455110
    [No Abstract]   [Full Text] [Related]  

  • 7. Electrophysiological Estimates of the Electrode-Neuron Interface Differ Between Younger and Older Listeners With Cochlear Implants.
    Jahn KN; Arenberg JG
    Ear Hear; 2020; 41(4):948-960. PubMed ID: 32032228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using the electrically-evoked compound action potential (ECAP) interphase gap effect to select electrode stimulation sites in cochlear implant users.
    Schvartz-Leyzac KC; Zwolan TA; Pfingst BE
    Hear Res; 2021 Jul; 406():108257. PubMed ID: 34020316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the Functional Status of the Cochlear Nerve in Individual Cochlear Implant Users Using Machine Learning and Electrophysiological Measures.
    Skidmore J; Xu L; Chao X; Riggs WJ; Pellittieri A; Vaughan C; Ning X; Wang R; Luo J; He S
    Ear Hear; 2021; 42(1):180-192. PubMed ID: 32826505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap.
    Schvartz-Leyzac KC; Pfingst BE
    Hear Res; 2016 Nov; 341():50-65. PubMed ID: 27521841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes over time in the electrically evoked compound action potential (ECAP) interphase gap (IPG) effect following cochlear implantation in Guinea pigs.
    Schvartz-Leyzac KC; Colesa DJ; Buswinka CJ; Swiderski DL; Raphael Y; Pfingst BE
    Hear Res; 2019 Nov; 383():107809. PubMed ID: 31630082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What can stimulus polarity and interphase gap tell us about auditory nerve function in cochlear-implant recipients?
    Hughes ML; Choi S; Glickman E
    Hear Res; 2018 Mar; 359():50-63. PubMed ID: 29307495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Cochlear Implant Channels With Relatively Poor Electrode-Neuron Interfaces Using the Electrically Evoked Compound Action Potential.
    Jahn KN; Arenberg JG
    Ear Hear; 2020; 41(4):961-973. PubMed ID: 31972772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplitude Growth Functions of Auditory Nerve Responses to Electric Pulse Stimulation With Varied Interphase Gaps in Cochlear Implant Users With Ipsilateral Residual Hearing.
    Imsiecke M; Büchner A; Lenarz T; Nogueira W
    Trends Hear; 2021; 25():23312165211014137. PubMed ID: 34181493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between electrically evoked compound action potential thresholds and behavioral T-levels in implanted children with cochlear nerve deficiency.
    Chao X; Wang R; Luo J; Wang H; Fan Z; Xu L
    Sci Rep; 2023 Mar; 13(1):4309. PubMed ID: 36922582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the association of electrically-evoked compound action potential thresholds with inner-ear dimensions in pediatric cochlear implantation.
    Söderqvist S; Sivonen V; Lamminmäki S; Ylönen J; Markkola A; Sinkkonen ST
    Int J Pediatr Otorhinolaryngol; 2022 Jul; 158():111160. PubMed ID: 35544967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How electrically evoked compound action potentials in chronically implanted guinea pigs relate to auditory nerve health and electrode impedance.
    Schvartz-Leyzac KC; Colesa DJ; Buswinka CJ; Rabah AM; Swiderski DL; Raphael Y; Pfingst BE
    J Acoust Soc Am; 2020 Dec; 148(6):3900. PubMed ID: 33379919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the Electrically Evoked Compound Action Potential over time After Implantation and Subsequent Deafening in Guinea Pigs.
    Ramekers D; Benav H; Klis SFL; Versnel H
    J Assoc Res Otolaryngol; 2022 Dec; 23(6):721-738. PubMed ID: 35948695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recommendations for Measuring the Electrically Evoked Compound Action Potential in Children With Cochlear Nerve Deficiency.
    He S; Chao X; Wang R; Luo J; Xu L; Teagle HFB; Park LR; Brown KD; Shannon M; Warner C; Pellittieri A; Riggs WJ
    Ear Hear; 2020; 41(3):465-475. PubMed ID: 31567301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Advanced Age on the Electrode-Neuron Interface in Cochlear Implant Users.
    Skidmore J; Carter BL; Riggs WJ; He S
    Ear Hear; 2022 Jul-Aug 01; 43(4):1300-1315. PubMed ID: 34935648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.