These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31688914)

  • 1. Network-based multi-task learning models for biomarker selection and cancer outcome prediction.
    Wang Z; He Z; Shah M; Zhang T; Fan D; Zhang W
    Bioinformatics; 2020 Mar; 36(6):1814-1822. PubMed ID: 31688914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-omics data integration by generative adversarial network.
    Ahmed KT; Sun J; Cheng S; Yong J; Zhang W
    Bioinformatics; 2021 Dec; 38(1):179-186. PubMed ID: 34415323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint reconstruction of multiple gene networks by simultaneously capturing inter-tumor and intra-tumor heterogeneity.
    Tu JJ; Ou-Yang L; Yan H; Zhang XF; Qin H
    Bioinformatics; 2020 May; 36(9):2755-2762. PubMed ID: 31971577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomarker identification and trans-regulatory network analyses in esophageal adenocarcinoma and Barrett's esophagus.
    Lv J; Guo L; Wang JH; Yan YZ; Zhang J; Wang YY; Yu Y; Huang YF; Zhao HP
    World J Gastroenterol; 2019 Jan; 25(2):233-244. PubMed ID: 30670912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-type biomedical named entity recognition with deep multi-task learning.
    Wang X; Zhang Y; Ren X; Zhang Y; Zitnik M; Shang J; Langlotz C; Han J
    Bioinformatics; 2019 May; 35(10):1745-1752. PubMed ID: 30307536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-task consensus clustering of genome-wide transcriptomes from related biological conditions.
    Niu Z; Chasman D; Eisfeld AJ; Kawaoka Y; Roy S
    Bioinformatics; 2016 May; 32(10):1509-17. PubMed ID: 26801959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer.
    Ye Y; Li SL; Wang SY
    PLoS One; 2018; 13(8):e0198055. PubMed ID: 30138363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer.
    Gendoo DM; Ratanasirigulchai N; Schröder MS; Paré L; Parker JS; Prat A; Haibe-Kains B
    Bioinformatics; 2016 Apr; 32(7):1097-9. PubMed ID: 26607490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network-based integration of multi-omics data for prioritizing cancer genes.
    Dimitrakopoulos C; Hindupur SK; Häfliger L; Behr J; Montazeri H; Hall MN; Beerenwinkel N
    Bioinformatics; 2018 Jul; 34(14):2441-2448. PubMed ID: 29547932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
    Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K
    Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. corto: a lightweight R package for gene network inference and master regulator analysis.
    Mercatelli D; Lopez-Garcia G; Giorgi FM
    Bioinformatics; 2020 Jun; 36(12):3916-3917. PubMed ID: 32232425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network-based meta-analysis in the identification of biomarkers for papillary thyroid cancer.
    Zhao H; Li H
    Gene; 2018 Jun; 661():160-168. PubMed ID: 29625265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of genes and pathways involved in kidney renal clear cell carcinoma.
    Yang W; Yoshigoe K; Qin X; Liu JS; Yang JY; Niemierko A; Deng Y; Liu Y; Dunker A; Chen Z; Wang L; Xu D; Arabnia HR; Tong W; Yang M
    BMC Bioinformatics; 2014; 15 Suppl 17(Suppl 17):S2. PubMed ID: 25559354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0.
    Skok Gibbs C; Jackson CA; Saldi GA; Tjärnberg A; Shah A; Watters A; De Veaux N; Tchourine K; Yi R; Hamamsy T; Castro DM; Carriero N; Gorissen BL; Gresham D; Miraldi ER; Bonneau R
    Bioinformatics; 2022 Apr; 38(9):2519-2528. PubMed ID: 35188184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iSOM-GSN: an integrative approach for transforming multi-omic data into gene similarity networks via self-organizing maps.
    Fatima N; Rueda L
    Bioinformatics; 2020 Aug; 36(15):4248-4254. PubMed ID: 32407457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EnGRaiN: a supervised ensemble learning method for recovery of large-scale gene regulatory networks.
    Aluru M; Shrivastava H; Chockalingam SP; Shivakumar S; Aluru S
    Bioinformatics; 2022 Feb; 38(5):1312-1319. PubMed ID: 34888624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.