These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31688978)

  • 1. Pyridinylidenaminophosphines: Facile Access to Highly Electron-Rich Phosphines.
    Rotering P; Wilm LFB; Werra JA; Dielmann F
    Chemistry; 2020 Jan; 26(2):406-411. PubMed ID: 31688978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tris(imidazolin-2-ylidenamino)phosphine: A Crystalline Phosphorus(III) Superbase That Splits Carbon Dioxide.
    Mehlmann P; Mück-Lichtenfeld C; Tan TTY; Dielmann F
    Chemistry; 2017 May; 23(25):5929-5933. PubMed ID: 27779340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imidazolin-2-ylidenaminophosphines as Highly Electron-Rich Ligands for Transition-Metal Catalysts.
    Wünsche MA; Mehlmann P; Witteler T; Buß F; Rathmann P; Dielmann F
    Angew Chem Int Ed Engl; 2015 Sep; 54(40):11857-60. PubMed ID: 26265298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switching the Electron-Donating Ability of Phosphines through Proton-Responsive Imidazolin-2-ylidenamino Substituents.
    Mehlmann P; Dielmann F
    Chemistry; 2019 Feb; 25(9):2352-2357. PubMed ID: 30506604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ylide-Substituted Phosphines: A Platform of Strong Donor Ligands for Gold Catalysis and Palladium-Catalyzed Coupling Reactions.
    Lapointe S; Sarbajna A; Gessner VH
    Acc Chem Res; 2022 Mar; 55(5):770-782. PubMed ID: 35170935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ylide-Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis.
    Scherpf T; Schwarz C; Scharf LT; Zur JA; Helbig A; Gessner VH
    Angew Chem Int Ed Engl; 2018 Sep; 57(39):12859-12864. PubMed ID: 29862622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible Carbon Dioxide Binding by Simple Lewis Base Adducts with Electron-Rich Phosphines.
    Buß F; Mehlmann P; Mück-Lichtenfeld C; Bergander K; Dielmann F
    J Am Chem Soc; 2016 Feb; 138(6):1840-3. PubMed ID: 26824487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free Metallophosphines: Extremely Electron-Rich Phosphorus Superbases That Are Electronically and Sterically Tunable.
    Wei R; Ju S; Liu LL
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202205618. PubMed ID: 35491966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Edge of the Known: Extremely Electron-Rich (Di)Carboranyl Phosphines.
    Schulz J; Clauss R; Kazimir A; Holzknecht S; Hey-Hawkins E
    Angew Chem Int Ed Engl; 2023 Mar; 62(14):e202218648. PubMed ID: 36573025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, Structure, and Applications of α-Cationic Phosphines.
    Alcarazo M
    Acc Chem Res; 2016 Sep; 49(9):1797-805. PubMed ID: 27529703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tris(tetramethylguanidinyl)phosphine: The Simplest Non-ionic Phosphorus Superbase and Strongly Donating Phosphine Ligand.
    Buß F; Röthel MB; Werra JA; Rotering P; Wilm LFB; Daniliuc CG; Löwe P; Dielmann F
    Chemistry; 2022 Jan; 28(3):e202104021. PubMed ID: 34793627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-rich pyridines with
    Franzen JH; Wilm LFB; Rotering P; Wurst K; Seidl M; Dielmann F
    Dalton Trans; 2024 Jul; 53(28):11876-11883. PubMed ID: 38953467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of molecular electrostatic potential at the carbene carbon as a simple and efficient electronic parameter of N-heterocyclic carbenes.
    Mathew J; Suresh CH
    Inorg Chem; 2010 May; 49(10):4665-9. PubMed ID: 20384355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino Acid-Derived Bifunctional Phosphines for Enantioselective Transformations.
    Wang T; Han X; Zhong F; Yao W; Lu Y
    Acc Chem Res; 2016 Jul; 49(7):1369-78. PubMed ID: 27310293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus-Containing Superbases: Recent Progress in the Chemistry of Electron-Abundant Phosphines and Phosphazenes.
    Weitkamp RF; Neumann B; Stammler HG; Hoge B
    Chemistry; 2021 Jul; 27(42):10807-10825. PubMed ID: 34032319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of N-Heterocyclic Carbenes and Their Complexes by Chloronium Ion Abstraction from 2-Chloroazolium Salts Using Electron-Rich Phosphines.
    Böhme MD; Eder T; Röthel MB; Dutschke PD; Wilm LFB; Hahn FE; Dielmann F
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202202190. PubMed ID: 35230738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphazenyl Phosphines: The Most Electron-Rich Uncharged Phosphorus Brønsted and Lewis Bases.
    Ullrich S; Kovačević B; Xie X; Sundermeyer J
    Angew Chem Int Ed Engl; 2019 Jul; 58(30):10335-10339. PubMed ID: 31037821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Stable PH-Ylides to α-Carbanionic Phosphines as Ligands for Zwitterionic Catalysts.
    Zur JA; Schmidt M; Feichtner KS; Duari P; Löffler J; Scherpf T; Gessner VH
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202203950. PubMed ID: 35644923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Assembly of Modular-Type Phosphines for Tackling Modern Arylation Processes.
    Tse MH; Choy PY; Kwong FY
    Acc Chem Res; 2022 Dec; 55(24):3688-3705. PubMed ID: 36472355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and redox stability of [Au(III)(X^N^X)PR
    Sánchez Delgado GY; Paschoal D; de Oliveira MAL; Dos Santos HF
    J Inorg Biochem; 2019 Nov; 200():110804. PubMed ID: 31472435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.