BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31689115)

  • 1. Simple Method To Characterize the Ciliary Proteome of Multiciliated Cells.
    Sim HJ; Yun S; Kim HE; Kwon KY; Kim GH; Yun S; Kim BG; Myung K; Park TJ; Kwon T
    J Proteome Res; 2020 Jan; 19(1):391-400. PubMed ID: 31689115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The highly conserved FOXJ1 target CFAP161 is dispensable for motile ciliary function in mouse and Xenopus.
    Beckers A; Fuhl F; Ott T; Boldt K; Brislinger MM; Walentek P; Schuster-Gossler K; Hegermann J; Alten L; Kremmer E; Przykopanski A; Serth K; Ueffing M; Blum M; Gossler A
    Sci Rep; 2021 Jun; 11(1):13333. PubMed ID: 34172766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development.
    Hayes JM; Kim SK; Abitua PB; Park TJ; Herrington ER; Kitayama A; Grow MW; Ueno N; Wallingford JB
    Dev Biol; 2007 Dec; 312(1):115-30. PubMed ID: 17961536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolutionary conserved FOXJ1 target gene Fam183b is essential for motile cilia in Xenopus but dispensable for ciliary function in mice.
    Beckers A; Ott T; Schuster-Gossler K; Boldt K; Alten L; Ueffing M; Blum M; Gossler A
    Sci Rep; 2018 Oct; 8(1):14678. PubMed ID: 30279523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The binding of LARP6 and DNAAF6 in biomolecular condensates influences ciliogenesis of multiciliated cells.
    Earwood R; Ninomiya H; Wang H; Shimada IS; Stroud M; Perez D; Uuganbayar U; Yamada C; Akiyama-Miyoshi T; Stefanovic B; Kato Y
    J Biol Chem; 2024 Jun; 300(6):107373. PubMed ID: 38762183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ckb and Ybx2 interact with Ribc2 and are necessary for the ciliary beating of multi-cilia.
    Kwon KY; Jeong H; Jang DG; Kwon T; Park TJ
    Genes Genomics; 2023 Feb; 45(2):157-167. PubMed ID: 36508087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFAP43 modulates ciliary beating in mouse and Xenopus.
    Rachev E; Schuster-Gossler K; Fuhl F; Ott T; Tveriakhina L; Beckers A; Hegermann J; Boldt K; Mai M; Kremmer E; Ueffing M; Blum M; Gossler A
    Dev Biol; 2020 Mar; 459(2):109-125. PubMed ID: 31884020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality.
    Boskovski MT; Yuan S; Pedersen NB; Goth CK; Makova S; Clausen H; Brueckner M; Khokha MK
    Nature; 2013 Dec; 504(7480):456-9. PubMed ID: 24226769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein localization screening
    Tu F; Sedzinski J; Ma Y; Marcotte EM; Wallingford JB
    J Cell Sci; 2018 Jan; 131(3):. PubMed ID: 29180514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rab11 regulates planar polarity and migratory behavior of multiciliated cells in Xenopus embryonic epidermis.
    Kim K; Lake BB; Haremaki T; Weinstein DC; Sokol SY
    Dev Dyn; 2012 Sep; 241(9):1385-95. PubMed ID: 22778024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. c21orf59/kurly Controls Both Cilia Motility and Polarization.
    Jaffe KM; Grimes DT; Schottenfeld-Roames J; Werner ME; Ku TS; Kim SK; Pelliccia JL; Morante NF; Mitchell BJ; Burdine RD
    Cell Rep; 2016 Mar; 14(8):1841-9. PubMed ID: 26904945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foxn4 promotes gene expression required for the formation of multiple motile cilia.
    Campbell EP; Quigley IK; Kintner C
    Development; 2016 Dec; 143(24):4654-4664. PubMed ID: 27864379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling.
    Zhao Y; Shi J; Winey M; Klymkowsky MW
    Dev Biol; 2016 Mar; 411(2):257-265. PubMed ID: 26783883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles.
    Walentek P; Bogusch S; Thumberger T; Vick P; Dubaissi E; Beyer T; Blum M; Schweickert A
    Development; 2014 Apr; 141(7):1526-33. PubMed ID: 24598162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-based silencing of Delta/Notch signaling promotes multiple cilia formation.
    Marcet B; Chevalier B; Coraux C; Kodjabachian L; Barbry P
    Cell Cycle; 2011 Sep; 10(17):2858-64. PubMed ID: 21857154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis.
    Walentek P
    Methods Mol Biol; 2018; 1865():251-263. PubMed ID: 30151772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin.
    Epting D; Slanchev K; Boehlke C; Hoff S; Loges NT; Yasunaga T; Indorf L; Nestel S; Lienkamp SS; Omran H; Kuehn EW; Ronneberger O; Walz G; Kramer-Zucker A
    Development; 2015 Jan; 142(1):174-84. PubMed ID: 25516973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of ciliary polarity by the APC/C.
    Ganner A; Lienkamp S; Schäfer T; Romaker D; Wegierski T; Park TJ; Spreitzer S; Simons M; Gloy J; Kim E; Wallingford JB; Walz G
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17799-804. PubMed ID: 19805045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo investigation of cilia structure and function using Xenopus.
    Brooks ER; Wallingford JB
    Methods Cell Biol; 2015; 127():131-59. PubMed ID: 25837389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease.
    Dubaissi E; Papalopulu N
    Dis Model Mech; 2011 Mar; 4(2):179-92. PubMed ID: 21183475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.