BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31689209)

  • 1. Selection of Features and Classifiers for EMG-EEG-Based Upper Limb Assistive Devices-A Review.
    Khan SM; Khan AA; Farooq O
    IEEE Rev Biomed Eng; 2020; 13():248-260. PubMed ID: 31689209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open Database for Accurate Upper-Limb Intent Detection Using Electromyography and Reliable Extreme Learning Machines.
    Cene VH; Tosin M; Machado J; Balbinot A
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of feature extraction techniques and classifiers for finger movement recognition using surface electromyography signal.
    Phukpattaranont P; Thongpanja S; Anam K; Al-Jumaily A; Limsakul C
    Med Biol Eng Comput; 2018 Dec; 56(12):2259-2271. PubMed ID: 29911250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification complexity in myoelectric pattern recognition.
    Nilsson N; Håkansson B; Ortiz-Catalan M
    J Neuroeng Rehabil; 2017 Jul; 14(1):68. PubMed ID: 28693533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review on electromyography based intention for upper limb control using pattern recognition for human-machine interaction.
    Asghar A; Jawaid Khan S; Azim F; Shakeel CS; Hussain A; Niazi IK
    Proc Inst Mech Eng H; 2022 May; 236(5):628-645. PubMed ID: 35118907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature Selection and Non-Linear Classifiers: Effects on Simultaneous Motion Recognition in Upper Limb.
    Camargo J; Young A
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):743-750. PubMed ID: 30869626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors.
    Samuel OW; Geng Y; Li X; Li G
    J Med Syst; 2017 Oct; 41(12):194. PubMed ID: 29080913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive classification of self-paced upper-limb analytical movements with EEG.
    Ibáñez J; Serrano JI; del Castillo MD; Minguez J; Pons JL
    Med Biol Eng Comput; 2015 Nov; 53(11):1201-10. PubMed ID: 25980505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechatronics platform to study prosthetic hand control using EMG signals.
    Geethanjali P
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):765-71. PubMed ID: 27278475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton.
    Kiguchi K; Imada Y; Liyanage M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3040-3. PubMed ID: 18002635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel method to characterize upper-limb movements based on paraconsistent logic and myoelectric signals.
    Favieiro GW; Moura KO; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():395-398. PubMed ID: 28268356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern recognition of EMG signals for low level grip force classification.
    Khan SM; Khan AA; Farooq O
    Biomed Phys Eng Express; 2021 Sep; 7(6):. PubMed ID: 34474400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Upper-Limb Movements Based on Muscle Shape Change Signals for Human-Robot Interaction.
    Huang P; Wang H; Wang Y; Liu Z; Samuel OW; Yu M; Li X; Chen S; Li G
    Comput Math Methods Med; 2020; 2020():5694265. PubMed ID: 32351614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-Based Control for Upper and Lower Limb Exoskeletons and Prostheses: A Systematic Review.
    Al-Quraishi MS; Elamvazuthi I; Daud SA; Parasuraman S; Borboni A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30301238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upper-limb movement classification based on sEMG signal validation with continuous channel selection.
    Cene VH; Favieiro G; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():486-9. PubMed ID: 26736305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses.
    Huang Y; Englehart KB; Hudgins B; Chan AD
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1801-11. PubMed ID: 16285383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an EMG-Based Muscle Health Model for Elbow Trauma Patients.
    Farago E; Chinchalkar S; Lizotte DJ; Trejos AL
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper limb complex movements decoding from pre-movement EEG signals using wavelet common spatial patterns.
    Mohseni M; Shalchyan V; Jochumsen M; Niazi IK
    Comput Methods Programs Biomed; 2020 Jan; 183():105076. PubMed ID: 31546195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals.
    Purushothaman G; Vikas R
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):549-559. PubMed ID: 29744809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.