These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. TADs as the Caller Calls Them. de Wit E J Mol Biol; 2020 Feb; 432(3):638-642. PubMed ID: 31654669 [TBL] [Abstract][Full Text] [Related]
3. Defining Functionally Relevant Spatial Chromatin Domains: It is a TAD Complicated. Sikorska N; Sexton T J Mol Biol; 2020 Feb; 432(3):653-664. PubMed ID: 31863747 [TBL] [Abstract][Full Text] [Related]
4. Perspectives on Chromosome Organization. Nollmann M; Koszul R J Mol Biol; 2020 Feb; 432(3):635-637. PubMed ID: 31987573 [No Abstract] [Full Text] [Related]
5. TADs and Their Borders: Free Movement or Building a Wall? Chang LH; Ghosh S; Noordermeer D J Mol Biol; 2020 Feb; 432(3):643-652. PubMed ID: 31887284 [TBL] [Abstract][Full Text] [Related]
6. TADs or no TADS: Lessons From Single-cell Imaging of Chromosome Architecture. Cardozo Gizzi AM; Cattoni DI; Nollmann M J Mol Biol; 2020 Feb; 432(3):682-693. PubMed ID: 31904354 [TBL] [Abstract][Full Text] [Related]
7. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective. Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106 [TBL] [Abstract][Full Text] [Related]
9. Higher-order Chromosome Structures Investigated by Polymer Physics in Cellular Morphogenesis and Differentiation. Esposito A; Chiariello AM; Conte M; Fiorillo L; Musella F; Sciarretta R; Bianco S J Mol Biol; 2020 Feb; 432(3):701-711. PubMed ID: 31863751 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of 3D Chromatin Interactions Using Hi-C. Hu G Methods Mol Biol; 2020; 2117():65-78. PubMed ID: 31960372 [TBL] [Abstract][Full Text] [Related]
11. Spatial organization of chromatin domains and compartments in single chromosomes. Wang S; Su JH; Beliveau BJ; Bintu B; Moffitt JR; Wu CT; Zhuang X Science; 2016 Aug; 353(6299):598-602. PubMed ID: 27445307 [TBL] [Abstract][Full Text] [Related]
12. Computational Analysis of Hi-C Data. Forcato M; Bicciato S Methods Mol Biol; 2021; 2157():103-125. PubMed ID: 32820401 [TBL] [Abstract][Full Text] [Related]
13. Principles of genome folding into topologically associating domains. Szabo Q; Bantignies F; Cavalli G Sci Adv; 2019 Apr; 5(4):eaaw1668. PubMed ID: 30989119 [TBL] [Abstract][Full Text] [Related]
14. What's in the "fold"? Mehra P; Kalani A Life Sci; 2018 Oct; 211():118-125. PubMed ID: 30213728 [TBL] [Abstract][Full Text] [Related]
15. The genome organization of Neurospora crassa at high resolution uncovers principles of fungal chromosome topology. Rodriguez S; Ward A; Reckard AT; Shtanko Y; Hull-Crew C; Klocko AD G3 (Bethesda); 2022 May; 12(5):. PubMed ID: 35244156 [TBL] [Abstract][Full Text] [Related]
16. Forces driving the three-dimensional folding of eukaryotic genomes. Rada-Iglesias A; Grosveld FG; Papantonis A Mol Syst Biol; 2018 Jun; 14(6):e8214. PubMed ID: 29858282 [TBL] [Abstract][Full Text] [Related]
17. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods? Nora EP; Dekker J; Heard E Bioessays; 2013 Sep; 35(9):818-28. PubMed ID: 23832846 [TBL] [Abstract][Full Text] [Related]
18. Chromatin Domains: The Unit of Chromosome Organization. Dixon JR; Gorkin DU; Ren B Mol Cell; 2016 Jun; 62(5):668-80. PubMed ID: 27259200 [TBL] [Abstract][Full Text] [Related]