These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31689471)

  • 41. Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications.
    Usman A; Zia KM; Zuber M; Tabasum S; Rehman S; Zia F
    Int J Biol Macromol; 2016 May; 86():630-45. PubMed ID: 26851360
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodegradation of renewable polyurethane foams in marine environments occurs through depolymerization by marine microorganisms.
    Gunawan NR; Tessman M; Zhen D; Johnson L; Evans P; Clements SM; Pomeroy RS; Burkart MD; Simkovsky R; Mayfield SP
    Sci Total Environ; 2022 Dec; 850():158761. PubMed ID: 36154974
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Degradation of polyurethane by Aspergillus flavus (ITCC 6051) isolated from soil.
    Mathur G; Prasad R
    Appl Biochem Biotechnol; 2012 Jul; 167(6):1595-602. PubMed ID: 22367637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of biodegradation products formed by L-phenylalanine based segmented polyurethaneureas.
    Elliott SL; Fromstein JD; Santerre JP; Woodhous KA
    J Biomater Sci Polym Ed; 2002; 13(6):691-711. PubMed ID: 12182552
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrolytic degradation of poly(carbonate)-urethanes by monocyte-derived macrophages.
    Labow RS; Meek E; Santerre JP
    Biomaterials; 2001 Nov; 22(22):3025-33. PubMed ID: 11575477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Applying Raman spectroscopy to the assessment of the biodegradation of industrial polyurethanes wastes.
    Cregut M; Bedas M; Assaf A; Durand-Thouand MJ; Thouand G
    Environ Sci Pollut Res Int; 2014; 21(16):9538-44. PubMed ID: 23653317
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities.
    Barratt SR; Ennos AR; Greenhalgh M; Robson GD; Handley PS
    J Appl Microbiol; 2003; 95(1):78-85. PubMed ID: 12807456
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of macromolecular additives to reduce the hydrolytic degradation of polyurethanes by lysosomal enzymes.
    Tang YW; Santerre JP; Labow RS; Taylor DG
    Biomaterials; 1997 Jan; 18(1):37-45. PubMed ID: 9003895
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes.
    Nakajima-Kambe T; Shigeno-Akutsu Y; Nomura N; Onuma F; Nakahara T
    Appl Microbiol Biotechnol; 1999 Feb; 51(2):134-40. PubMed ID: 10091317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization.
    Lligadas G; Ronda JC; Galià M; Cádiz V
    Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biodegradable polyurethane cytocompatibility to fibroblasts and staphylococci.
    Harris LG; Gorna K; Gogolewski S; Richards RG
    J Biomed Mater Res A; 2006 May; 77(2):304-12. PubMed ID: 16400656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of 'biostable' polyurethanes.
    Pinchuk L
    J Biomater Sci Polym Ed; 1994; 6(3):225-67. PubMed ID: 7986779
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Short-term in vitro and in vivo biocompatibility of a biodegradable polyurethane foam based on 1,4-butanediisocyanate.
    van Minnen B; van Leeuwen MB; Stegenga B; Zuidema J; Hissink CE; van Kooten TG; Bos RR
    J Mater Sci Mater Med; 2005 Mar; 16(3):221-7. PubMed ID: 15744613
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodegradation of plastics.
    Shimao M
    Curr Opin Biotechnol; 2001 Jun; 12(3):242-7. PubMed ID: 11404101
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Urethanases for the Enzymatic Hydrolysis of Low Molecular Weight Carbamates and the Recycling of Polyurethanes.
    Branson Y; Söltl S; Buchmann C; Wei R; Schaffert L; Badenhorst CPS; Reisky L; Jäger G; Bornscheuer UT
    Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202216220. PubMed ID: 36591907
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes.
    Tang YW; Labow RS; Santerre JP
    Biomaterials; 2003 Aug; 24(17):2805-19. PubMed ID: 12742719
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controllable Degradation of Polyurethane Thermosets with Silaketal Linkages in Response to Weak Acid.
    Zhang S; Xu XQ; Liao S; Pan Q; Ma X; Wang Y
    ACS Macro Lett; 2022 Jul; 11(7):868-874. PubMed ID: 35762900
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers.
    Luo YL; Nan YF; Xu F; Chen YS; Zhao P
    J Biomater Sci Polym Ed; 2010; 21(8-9):1143-72. PubMed ID: 20507713
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Synthesis, characterization and electrospinning of biodegradable polyurethanes based on poly(epsilon-caprolactone) and L-lysine diisocynate].
    Han J; Ye L; Zhang A; Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1274-9. PubMed ID: 21374978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.