BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31689576)

  • 1. Effect of cellulose nanofiber content on flexural properties of a model, thermoplastic, injection-molded, polymethyl methacrylate denture base material.
    Kawaguchi T; Lassila LVJ; Baba H; Tashiro S; Hamanaka I; Takahashi Y; Vallittu PK
    J Mech Behav Biomed Mater; 2020 Feb; 102():103513. PubMed ID: 31689576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexural strength and moduli of hypoallergenic denture base materials.
    Pfeiffer P; Rolleke C; Sherif L
    J Prosthet Dent; 2005 Apr; 93(4):372-7. PubMed ID: 15798688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of pure cellulose nanofibers as a denture base material.
    Yamazaki Y; Ito T; Ogawa T; Hong G; Yamada Y; Hamada T; Sasaki K
    J Oral Sci; 2020 Dec; 63(1):111-113. PubMed ID: 33298639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexural strength of polymethyl methacrylate copolymers as a denture base resin.
    Hayran Y; Keskin Y
    Dent Mater J; 2019 Jul; 38(4):678-686. PubMed ID: 31231108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Thermal Cycling on Flexural Properties of Microcrystalline Cellulose-Reinforced Denture Base Acrylic Resins.
    Rahaman Ali AAA; John J; Mani SA; El-Seedi HR
    J Prosthodont; 2020 Aug; 29(7):611-616. PubMed ID: 30637856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some mechanical properties of a highly cross-linked, microwave-polymerized, injection-molded denture base polymer.
    Memon MS; Yunus N; Razak AA
    Int J Prosthodont; 2001; 14(3):214-8. PubMed ID: 11484567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers.
    Vallittu PK
    J Prosthet Dent; 1999 Mar; 81(3):318-26. PubMed ID: 10050121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite.
    Sun W; Cai Q; Li P; Deng X; Wei Y; Xu M; Yang X
    Dent Mater; 2010 Sep; 26(9):873-80. PubMed ID: 20579722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Reinforcement on the Flexural Properties of Injection-Molded Thermoplastic Denture Base Resins.
    Sasaki H; Hamanaka I; Takahashi Y; Kawaguchi T
    J Prosthodont; 2017 Jun; 26(4):302-308. PubMed ID: 26682773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of polyamide versus different PMMA denture base materials.
    Ucar Y; Akova T; Aysan I
    J Prosthodont; 2012 Apr; 21(3):173-6. PubMed ID: 22372855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair strength of hypoallergenic denture base materials.
    Pfeiffer P; An N; Schmage P
    J Prosthet Dent; 2008 Oct; 100(4):292-301. PubMed ID: 18922258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of mica reinforcement on the flexural strength and microhardness of polymethyl methacrylate denture resin.
    Mansour MM; Wagner WC; Chu TM
    J Prosthodont; 2013 Apr; 22(3):179-83. PubMed ID: 22984783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of water sorption on mechanical properties of injection-molded thermoplastic denture base resins.
    Hamanaka I; Iwamoto M; Lassila L; Vallittu P; Shimizu H; Takahashi Y
    Acta Odontol Scand; 2014 Nov; 72(8):859-65. PubMed ID: 24850507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibre-reinforced and repaired PMMA denture base resin: Effect of placement on the flexural strength and load-bearing capacity.
    Li GH; Chen S; Grymak A; Waddell JN; Kim JJ; Choi JJE
    J Mech Behav Biomed Mater; 2021 Dec; 124():104828. PubMed ID: 34530303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hardness, flexural strength, and flexural modulus comparisons of three differently cured denture base systems.
    Ali IL; Yunus N; Abu-Hassan MI
    J Prosthodont; 2008 Oct; 17(7):545-9. PubMed ID: 18761582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexural strength of denture base acrylic resins processed by conventional and CAD-CAM methods.
    Aguirre BC; Chen JH; Kontogiorgos ED; Murchison DF; Nagy WW
    J Prosthet Dent; 2020 Apr; 123(4):641-646. PubMed ID: 31353106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of polymeric nanofibers on the mechanical behavior of polymethyl methacrylate resin.
    Gonçalves NI; Münchow EA; Santos JD; Sato TP; de Oliveira LR; de Arruda Paes-Junior TJ; Bottino MC; Borges ALS
    J Mech Behav Biomed Mater; 2020 Dec; 112():104072. PubMed ID: 32911228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heat treatment of polymethyl methacrylate powder on mechanical properties of denture base resin.
    Kawaguchi T; Lassila LV; Sasaki H; Takahashi Y; Vallittu PK
    J Mech Behav Biomed Mater; 2014 Nov; 39():73-8. PubMed ID: 25105239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evaluation of microleakage and bond strength of a silicone-based resilient liner following denture base surface pretreatment.
    Sarac D; Sarac YS; Basoglu T; Yapici O; Yuzbasioglu E
    J Prosthet Dent; 2006 Feb; 95(2):143-51. PubMed ID: 16473089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of cellulose nanofibers as a denture immersing solution.
    Zou W; Hong G; Yamazaki Y; Takase K; Ogawa T; Washio J; Takahashi N; Sasaki K
    Dent Mater J; 2020 Jan; 39(1):80-88. PubMed ID: 31611498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.