These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 31689962)
1. Vision-Based Multirotor Following Using Synthetic Learning Techniques. Rodriguez-Ramos A; Alvarez-Fernandez A; Bavle H; Campoy P; How JP Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31689962 [TBL] [Abstract][Full Text] [Related]
2. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV. de Oliveira DC; Wehrmeister MA Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290 [TBL] [Abstract][Full Text] [Related]
3. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy. Xie J; Peng X; Wang H; Niu W; Zheng X Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747 [TBL] [Abstract][Full Text] [Related]
4. General Purpose Low-Level Reinforcement Learning Control for Multi-Axis Rotor Aerial Vehicles. Pi CH; Dai YW; Hu KC; Cheng S Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283119 [TBL] [Abstract][Full Text] [Related]
5. Airborne Visual Detection and Tracking of Cooperative UAVs Exploiting Deep Learning. Opromolla R; Inchingolo G; Fasano G Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31591368 [TBL] [Abstract][Full Text] [Related]
6. Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV System. Hinas A; Roberts JM; Gonzalez F Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258211 [TBL] [Abstract][Full Text] [Related]
7. Increasing the Robustness of Deep Learning Models for Object Segmentation: A Framework for Blending Automatically Annotated Real and Synthetic Data. Karoly AI; Tirczka S; Gao H; Rudas IJ; Galambos P IEEE Trans Cybern; 2024 Jan; 54(1):25-38. PubMed ID: 37285241 [TBL] [Abstract][Full Text] [Related]
8. Combining Synthetic Images and Deep Active Learning: Data-Efficient Training of an Industrial Object Detection Model. Eversberg L; Lambrecht J J Imaging; 2024 Jan; 10(1):. PubMed ID: 38249001 [TBL] [Abstract][Full Text] [Related]
9. A UAV Maneuver Decision-Making Algorithm for Autonomous Airdrop Based on Deep Reinforcement Learning. Li K; Zhang K; Zhang Z; Liu Z; Hua S; He J Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806886 [TBL] [Abstract][Full Text] [Related]
10. Convergence and Robustness Analysis of Novel Adaptive Multilayer Neural Dynamics-Based Controllers of Multirotor UAVs. Zheng L; Zhang Z IEEE Trans Cybern; 2021 Jul; 51(7):3710-3723. PubMed ID: 31295138 [TBL] [Abstract][Full Text] [Related]
11. Efficient Lazy Theta* Path Planning over a Sparse Grid to Explore Large 3D Volumes with a Multirotor UAV. Faria M; Marín R; Popović M; Maza I; Viguria A Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621305 [TBL] [Abstract][Full Text] [Related]
12. Automatic Change Detection System over Unmanned Aerial Vehicle Video Sequences Based on Convolutional Neural Networks. García Rubio V; Rodrigo Ferrán JA; Menéndez García JM; Sánchez Almodóvar N; Lalueza Mayordomo JM; Álvarez F Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623134 [TBL] [Abstract][Full Text] [Related]
13. Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey. Orr J; Dutta A Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050685 [TBL] [Abstract][Full Text] [Related]
14. From Discriminant to Complete: Reinforcement Searching-Agent Learning for Weakly Supervised Object Detection. Zhang D; Han J; Zhao L; Zhao T IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5549-5560. PubMed ID: 32092016 [TBL] [Abstract][Full Text] [Related]
15. Learning adaptive reaching and pushing skills using contact information. Wang S; Sun L; Zha F; Guo W; Wang P Front Neurorobot; 2023; 17():1271607. PubMed ID: 37781411 [TBL] [Abstract][Full Text] [Related]