These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comparison of Physicochemical Properties of Two Types of Polyepichlorohydrin-Based Anion Exchange Membranes for Reverse Electrodialysis. Karakoç E; Güler E Membranes (Basel); 2022 Feb; 12(3):. PubMed ID: 35323732 [TBL] [Abstract][Full Text] [Related]
3. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis. Wang S; Sun Z; Ahmad M; Fu W; Gao Z Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Poly(Acrylic) Acid-Modified Heterogenous Anion Exchange Membranes with Improved Monovalent Permselectivity for RED. Merino-Garcia I; Kotoka F; Portugal CAM; Crespo JG; Velizarov S Membranes (Basel); 2020 Jun; 10(6):. PubMed ID: 32604781 [TBL] [Abstract][Full Text] [Related]
5. Surface Modifications of Anion Exchange Membranes for an Improved Reverse Electrodialysis Process Performance: A Review. Kotoka F; Merino-Garcia I; Velizarov S Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32707798 [TBL] [Abstract][Full Text] [Related]
6. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. Guler E; Zhang Y; Saakes M; Nijmeijer K ChemSusChem; 2012 Nov; 5(11):2262-70. PubMed ID: 23109486 [TBL] [Abstract][Full Text] [Related]
7. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. Yip NY; Elimelech M Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687 [TBL] [Abstract][Full Text] [Related]
8. Transitioning from electrodialysis to reverse electrodialysis stack design for energy generation from high concentration salinity gradients. Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ Energy Convers Manag; 2021 Sep; 244():None. PubMed ID: 34538999 [TBL] [Abstract][Full Text] [Related]
9. Bacterial nanocellulose membrane with opposite surface charges for large-scale and large-area osmotic energy harvesting and ion transport. Zhang K; Wu H; Zhang X; Dong H; Chen S; Xu Y; Xu F Int J Biol Macromol; 2024 Mar; 260(Pt 1):129461. PubMed ID: 38237827 [TBL] [Abstract][Full Text] [Related]
10. Electrospinning of Polyepychlorhydrin and Polyacrylonitrile Anionic Exchange Membranes for Reverse Electrodialysis. Reyes-Aguilera JA; Villafaña-López L; Rentería-Martínez EC; Anderson SM; Jaime-Ferrer JS Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564534 [TBL] [Abstract][Full Text] [Related]
11. Upscaling Reverse Electrodialysis. Moreno J; Grasman S; van Engelen R; Nijmeijer K Environ Sci Technol; 2018 Sep; 52(18):10856-10863. PubMed ID: 30102521 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Yip NY; Vermaas DA; Nijmeijer K; Elimelech M Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542 [TBL] [Abstract][Full Text] [Related]
13. Further Development of Polyepichlorohydrin Based Anion Exchange Membranes for Reverse Electrodialysis by Tuning Cast Solution Properties. Eti M; Cihanoğlu A; Güler E; Gomez-Coma L; Altıok E; Arda M; Ortiz I; Kabay N Membranes (Basel); 2022 Nov; 12(12):. PubMed ID: 36557099 [TBL] [Abstract][Full Text] [Related]
14. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH Yao L; Li Q; Pan S; Cheng J; Liu X Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210 [TBL] [Abstract][Full Text] [Related]
15. Tailoring the Surface Chemistry of Anion Exchange Membranes with Zwitterions: Toward Antifouling RED Membranes. Pintossi D; Saakes M; Borneman Z; Nijmeijer K ACS Appl Mater Interfaces; 2021 Apr; 13(15):18348-18357. PubMed ID: 33827211 [TBL] [Abstract][Full Text] [Related]
16. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED). Pawlowski S; Galinha CF; Crespo JG; Velizarov S Water Res; 2016 Jan; 88():184-198. PubMed ID: 26497936 [TBL] [Abstract][Full Text] [Related]
17. Compressible Ionized Natural 3D Interconnected Loofah Membrane for Salinity Gradient Power Generation. Luan P; Zhao Y; Li Q; Cao D; Wang Y; Sun X; Liu C; Zhu H Small; 2022 Jan; 18(2):e2104320. PubMed ID: 34747120 [TBL] [Abstract][Full Text] [Related]
18. Fouling in reverse electrodialysis under natural conditions. Vermaas DA; Kunteng D; Saakes M; Nijmeijer K Water Res; 2013 Mar; 47(3):1289-98. PubMed ID: 23266386 [TBL] [Abstract][Full Text] [Related]
19. MOF-Derived Nanoporous Carbon Incorporated in the Cation Exchange Membrane for Gradient Power Generation. Sun X; Liu Y; Xu R; Chen Y Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323797 [TBL] [Abstract][Full Text] [Related]
20. Resistance of Ion Exchange Membranes in Aqueous Mixtures of Monovalent and Divalent Ions and the Effect on Reverse Electrodialysis. Veerman J; Gómez-Coma L; Ortiz A; Ortiz I Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]