These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 31689974)
1. Gas Biosensor Arrays Based on Single-Stranded DNA-Functionalized Single-Walled Carbon Nanotubes for the Detection of Volatile Organic Compound Biomarkers Released by Huanglongbing Disease-Infected Citrus Trees. Wang H; Ramnani P; Pham T; Villarreal CC; Yu X; Liu G; Mulchandani A Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31689974 [TBL] [Abstract][Full Text] [Related]
2. Asymptomatic Diagnosis of Huanglongbing Disease Using Metalloporphyrin Functionalized Single-Walled Carbon Nanotubes Sensor Arrays. Wang H; Ramnani P; Pham T; Villarreal CC; Yu X; Liu G; Mulchandani A Front Chem; 2020; 8():362. PubMed ID: 32478033 [TBL] [Abstract][Full Text] [Related]
3. Bioelectronic Nose Based on Single-Stranded DNA and Single-Walled Carbon Nanotube to Identify a Major Plant Volatile Organic Compound (p-Ethylphenol) Released by Phytophthora Cactorum Infected Strawberries. Wang H; Wang Y; Hou X; Xiong B Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32155991 [TBL] [Abstract][Full Text] [Related]
4. Detection of a secreted protein biomarker for citrus Huanglongbing using a single-walled carbon nanotubes-based chemiresistive biosensor. Tran TT; Clark K; Ma W; Mulchandani A Biosens Bioelectron; 2020 Jan; 147():111766. PubMed ID: 31654821 [TBL] [Abstract][Full Text] [Related]
5. Detection of Huanglongbing disease using differential mobility spectrometry. Aksenov AA; Pasamontes A; Peirano DJ; Zhao W; Dandekar AM; Fiehn O; Ehsani R; Davis CE Anal Chem; 2014 Mar; 86(5):2481-8. PubMed ID: 24484549 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Volatile Organic Compounds of Healthy and Huanglongbing-Infected Navel Orange and Pomelo Leaves by HS-GC-IMS. Cao S; Sun J; Yuan X; Deng W; Zhong B; Chun J Molecules; 2020 Sep; 25(18):. PubMed ID: 32916953 [TBL] [Abstract][Full Text] [Related]
7. Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer. Sanchez L; Pant S; Xing Z; Mandadi K; Kurouski D Anal Bioanal Chem; 2019 May; 411(14):3125-3133. PubMed ID: 30989272 [TBL] [Abstract][Full Text] [Related]
8. Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes. Zhang X; Jiao K; Liu S; Hu Y Anal Chem; 2009 Aug; 81(15):6006-12. PubMed ID: 20337392 [TBL] [Abstract][Full Text] [Related]
9. Single-stranded DNA functionalized single-walled carbon nanotubes for microbiosensors via layer-by-layer electrostatic self-assembly. Kang Z; Yan X; Zhang Y; Pan J; Shi J; Zhang X; Liu Y; Choi JH; Porterfield DM ACS Appl Mater Interfaces; 2014 Mar; 6(6):3784-9. PubMed ID: 24606733 [TBL] [Abstract][Full Text] [Related]
10. Optical characterization of DNA-wrapped single walled carbon nanotubes irradiated with ultraviolet light. Yoon D; Cao C; Choi JB; Kim YJ; Baik S J Nanosci Nanotechnol; 2008 Oct; 8(10):5135-8. PubMed ID: 19198406 [TBL] [Abstract][Full Text] [Related]
11. Exogenous application of the plant signalers methyl jasmonate and salicylic acid induces changes in volatile emissions from citrus foliage and influences the aggregation behavior of Asian citrus psyllid (Diaphorina citri), vector of Huanglongbing. Patt JM; Robbins PS; Niedz R; McCollum G; Alessandro R PLoS One; 2018; 13(3):e0193724. PubMed ID: 29596451 [TBL] [Abstract][Full Text] [Related]
12. Raman Spectroscopy an Option for the Early Detection of Citrus Huanglongbing. Pérez MR; Mendoza MG; Elías MG; González FJ; Contreras HR; Servín CC Appl Spectrosc; 2016 May; 70(5):829-39. PubMed ID: 26988658 [TBL] [Abstract][Full Text] [Related]
13. A review of techniques for detecting Huanglongbing (greening) in citrus. Arredondo Valdés R; Delgado Ortiz JC; Beltrán Beache M; Anguiano Cabello J; Cerna Chávez E; Rodríguez Pagaza Y; Ochoa Fuentes YM Can J Microbiol; 2016 Oct; 62(10):803-811. PubMed ID: 27590666 [TBL] [Abstract][Full Text] [Related]
14. Ionic Liquid-Carbon Nanotube Sensor Arrays for Human Breath Related Volatile Organic Compounds. Park CH; Schroeder V; Kim BJ; Swager TM ACS Sens; 2018 Nov; 3(11):2432-2437. PubMed ID: 30379539 [TBL] [Abstract][Full Text] [Related]
15. Simple detection of nucleic acids with a single-walled carbon-nanotube-based electrochemical biosensor. Yang K; Zhang CY Biosens Bioelectron; 2011 Oct; 28(1):257-62. PubMed ID: 21816598 [TBL] [Abstract][Full Text] [Related]
16. Differentiation of complex vapor mixtures using versatile DNA-carbon nanotube chemical sensor arrays. Kybert NJ; Lerner MB; Yodh JS; Preti G; Johnson AT ACS Nano; 2013 Mar; 7(3):2800-7. PubMed ID: 23442175 [TBL] [Abstract][Full Text] [Related]
17. DNA sequence detection based on Raman spectroscopy using single walled carbon nanotube. Bansal J; Singh I; Bhatnagar PK; Mathur PC J Biosci Bioeng; 2013 Apr; 115(4):438-41. PubMed ID: 23207369 [TBL] [Abstract][Full Text] [Related]
18. Scalable Arrays of Chemical Vapor Sensors Based on DNA-Decorated Graphene. Ping J; Johnson ATC Methods Mol Biol; 2019; 2027():163-170. PubMed ID: 31309480 [TBL] [Abstract][Full Text] [Related]