These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 31690055)

  • 1. Three-Dimensional Printed Devices in Droplet Microfluidics.
    Zhang JM; Ji Q; Duan H
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31690055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography.
    Männel MJ; Baysak E; Thiele J
    Molecules; 2021 May; 26(9):. PubMed ID: 34068649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional-printing for microfluidics or the other way around?
    Zhang Y
    Int J Bioprint; 2019; 5(2):192. PubMed ID: 32596534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet.
    Chen L; Xiao Y; Wu Q; Yan X; Zhao P; Ruan J; Shan J; Chen D; Weitz DA; Ye F
    Small; 2021 Oct; 17(39):e2102579. PubMed ID: 34390183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations.
    Ballacchino G; Weaver E; Mathew E; Dorati R; Genta I; Conti B; Lamprou DA
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Printing Enabled Droplet Microfluidic Device for Real-Time Monitoring of Single-Cell Viability and Blebbing Activity.
    Lin M; Liu T; Liu Y; Lin Z; Chen J; Song J; Qiu Y; Zhou B
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printhead on a chip: empowering droplet-based bioprinting with microfluidics.
    Zhang P; Liu C; Modavi C; Abate A; Chen H
    Trends Biotechnol; 2024 Mar; 42(3):353-368. PubMed ID: 37777352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Inkjet-Printed Digital Microfluidics Devices.
    Chen S; He Z; Choi S; Novosselov IV
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation.
    Ji Q; Zhang JM; Liu Y; Li X; Lv P; Jin D; Duan H
    Sci Rep; 2018 Mar; 8(1):4791. PubMed ID: 29556013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications.
    Su W; Cook BS; Fang Y; Tentzeris MM
    Sci Rep; 2016 Oct; 6():35111. PubMed ID: 27713545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and inexpensive microfluidic electrode integration with conductive ink.
    McIntyre D; Lashkaripour A; Densmore D
    Lab Chip; 2020 Oct; 20(20):3690-3695. PubMed ID: 32895672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell droplet microfluidics for biomedical applications.
    Liu D; Sun M; Zhang J; Hu R; Fu W; Xuanyuan T; Liu W
    Analyst; 2022 May; 147(11):2294-2316. PubMed ID: 35506869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-Printed Immunosensor Arrays for Cancer Diagnostics.
    Sharafeldin M; Kadimisetty K; Bhalerao KS; Chen T; Rusling JF
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32806676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.