These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 31690055)
21. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Duarte LC; Figueredo F; Chagas CLS; Cortón E; Coltro WKT Anal Chim Acta; 2024 Apr; 1299():342429. PubMed ID: 38499426 [TBL] [Abstract][Full Text] [Related]
22. 3D printed microfluidics for biological applications. Ho CM; Ng SH; Li KH; Yoon YJ Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523 [TBL] [Abstract][Full Text] [Related]
23. Fused Filament Fabrication (FFF) for Manufacturing of Microfluidic Micromixers: An Experimental Study on the Effect of Process Variables in Printed Microfluidic Micromixers. Zeraatkar M; de Tullio MD; Percoco G Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442481 [TBL] [Abstract][Full Text] [Related]
24. Sub-second synthesis of silver nanoparticles in 3D printed monolithic multilayered microfluidic chip: Enhanced chemiluminescence sensing predictions via machine learning algorithms. Kumar PS; Madapusi S; Goel S Int J Biol Macromol; 2023 Aug; 245():125502. PubMed ID: 37348592 [TBL] [Abstract][Full Text] [Related]
25. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach. Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759 [TBL] [Abstract][Full Text] [Related]
26. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells. Cole RH; Tang SY; Siltanen CA; Shahi P; Zhang JQ; Poust S; Gartner ZJ; Abate AR Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8728-8733. PubMed ID: 28760972 [TBL] [Abstract][Full Text] [Related]
27. Surface behaviors of droplet manipulation in microfluidics devices. Wu L; Guo Z; Liu W Adv Colloid Interface Sci; 2022 Oct; 308():102770. PubMed ID: 36113310 [TBL] [Abstract][Full Text] [Related]
28. Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface. Pradela Filho LA; Paixão TRLC; Nordin GP; Woolley AT Anal Bioanal Chem; 2024 Apr; 416(9):2031-2037. PubMed ID: 37470814 [TBL] [Abstract][Full Text] [Related]
29. Droplet microfluidics-based biomedical microcarriers. Shao C; Chi J; Shang L; Fan Q; Ye F Acta Biomater; 2022 Jan; 138():21-33. PubMed ID: 34718181 [TBL] [Abstract][Full Text] [Related]
30. 3D-printed miniaturized fluidic tools in chemistry and biology. Dixit CK; Kadimisetty K; Rusling J Trends Analyt Chem; 2018 Sep; 106():37-52. PubMed ID: 32296252 [TBL] [Abstract][Full Text] [Related]
31. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication. Morgan AJ; Hidalgo San Jose L; Jamieson WD; Wymant JM; Song B; Stephens P; Barrow DA; Castell OK PLoS One; 2016; 11(4):e0152023. PubMed ID: 27050661 [TBL] [Abstract][Full Text] [Related]
32. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Trinh TND; Do HDK; Nam NN; Dan TT; Trinh KTL; Lee NY Pharmaceuticals (Basel); 2023 Jun; 16(7):. PubMed ID: 37513850 [TBL] [Abstract][Full Text] [Related]
33. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components. Ahmed I; Sullivan K; Priye A Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047 [TBL] [Abstract][Full Text] [Related]
34. Droplet Microfluidics for Current Cancer Research: From Single-Cell Analysis to 3D Cell Culture. Jiang L; Guo K; Chen Y; Xiang N ACS Biomater Sci Eng; 2024 Mar; 10(3):1335-1354. PubMed ID: 38420753 [TBL] [Abstract][Full Text] [Related]
35. 3D Printing: an appealing technology for the manufacturing of solid oral dosage forms. Pitzanti G; Mathew E; Andrews GP; Jones DS; Lamprou DA J Pharm Pharmacol; 2022 Oct; 74(10):1427-1449. PubMed ID: 34529072 [TBL] [Abstract][Full Text] [Related]
36. Recent methods of droplet microfluidics and their applications in spheroids and organoids. Wang Y; Liu M; Zhang Y; Liu H; Han L Lab Chip; 2023 Mar; 23(5):1080-1096. PubMed ID: 36628972 [TBL] [Abstract][Full Text] [Related]
37. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation. Wippold JA; Huang C; Stratis-Cullum D; Han A Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327 [TBL] [Abstract][Full Text] [Related]
38. A 3D-Printed Standardized Modular Microfluidic System for Droplet Generation. Chen J; Huang S; Long Y; Wang K; Guan Y; Hou L; Dai B; Zhuang S; Zhang D Biosensors (Basel); 2022 Nov; 12(12):. PubMed ID: 36551052 [TBL] [Abstract][Full Text] [Related]
39. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices. Carrell CS; McCord CP; Wydallis RM; Henry CS Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678 [TBL] [Abstract][Full Text] [Related]
40. 3D printed microfluidics: advances in strategies, integration, and applications. Su R; Wang F; McAlpine MC Lab Chip; 2023 Mar; 23(5):1279-1299. PubMed ID: 36779387 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]