These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31690076)

  • 21. Sheathless and high throughput sorting of paramagnetic microparticles in a magneto-hydrodynamic microfluidic device.
    Kumar V; Rezai P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():473-476. PubMed ID: 28268374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Field-free, sheathless cell focusing in exponentially expanding hydrophoretic channels for microflow cytometry.
    Song S; Choi S
    Cytometry A; 2013 Nov; 83(11):1034-40. PubMed ID: 24115760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting.
    de Wijs K; Liu C; Dusa A; Vercruysse D; Majeed B; Tezcan DS; Blaszkiewicz K; Loo J; Lagae L
    Lab Chip; 2017 Mar; 17(7):1287-1296. PubMed ID: 28252674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sheathless inertial cell focusing and sorting with serial reverse wavy channel structures.
    Zhou Y; Ma Z; Ai Y
    Microsyst Nanoeng; 2018; 4():5. PubMed ID: 31057895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustic bubble sorting for ultrasound contrast agent enrichment.
    Segers T; Versluis M
    Lab Chip; 2014 May; 14(10):1705-14. PubMed ID: 24651248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer.
    Goddard G; Martin JC; Graves SW; Kaduchak G
    Cytometry A; 2006 Feb; 69(2):66-74. PubMed ID: 16419065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Line-Focused Optical Excitation of Parallel Acoustic Focused Sample Streams for High Volumetric and Analytical Rate Flow Cytometry.
    Kalb DM; Fencl FA; Woods TA; Swanson A; Maestas GC; Juárez JJ; Edwards BS; Shreve AP; Graves SW
    Anal Chem; 2017 Sep; 89(18):9967-9975. PubMed ID: 28823146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid microfluidic sorting of rare cells based on high throughput inertial focusing and high accuracy acoustic manipulation.
    Zhou Y; Ma Z; Ai Y
    RSC Adv; 2019 Sep; 9(53):31186-31195. PubMed ID: 35529382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sheathless and high-throughput elasto-inertial bacterial sorting for enhancing molecular diagnosis of bloodstream infection.
    Lu X; Chow JJM; Koo SH; Jiang B; Tan TY; Yang D; Ai Y
    Lab Chip; 2021 Jun; 21(11):2163-2177. PubMed ID: 33899072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Standing surface acoustic wave (SSAW) based multichannel cell sorting.
    Ding X; Lin SC; Lapsley MI; Li S; Guo X; Chan CY; Chiang IK; Wang L; McCoy JP; Huang TJ
    Lab Chip; 2012 Nov; 12(21):4228-31. PubMed ID: 22992833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sheathless inertial particle focusing methods within microfluidic devices: a review.
    Peng T; Qiang J; Yuan S
    Front Bioeng Biotechnol; 2023; 11():1331968. PubMed ID: 38260735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis.
    Gautam GP; Gurung R; Fencl FA; Piyasena ME
    Anal Bioanal Chem; 2018 Oct; 410(25):6561-6571. PubMed ID: 30046870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deterministic Sorting of Submicrometer Particles and Extracellular Vesicles Using a Combined Electric and Acoustic Field.
    Tayebi M; Yang D; Collins DJ; Ai Y
    Nano Lett; 2021 Aug; 21(16):6835-6842. PubMed ID: 34355908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced acoustic resonator dimensions improve focusing efficiency of bacteria and submicron particles.
    Ugawa M; Lee H; Baasch T; Lee M; Kim S; Jeong O; Choi YH; Sohn D; Laurell T; Ota S; Lee S
    Analyst; 2022 Jan; 147(2):274-281. PubMed ID: 34889326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An integrated high-throughput microfluidic circulatory fluorescence-activated cell sorting system (μ-CFACS) for the enrichment of rare cells.
    Cai K; Mankar S; Ajiri T; Shirai K; Yotoriyama T
    Lab Chip; 2021 Aug; 21(16):3112-3127. PubMed ID: 34286793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sheathless Focusing and Separation of Microparticles Using Tilted-Angle Traveling Surface Acoustic Waves.
    Ahmed H; Destgeer G; Park J; Afzal M; Sung HJ
    Anal Chem; 2018 Jul; 90(14):8546-8552. PubMed ID: 29911381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Derivation of three clones from human embryonic stem cell lines by FACS sorting and their characterization.
    Sidhu KS; Tuch BE
    Stem Cells Dev; 2006 Feb; 15(1):61-9. PubMed ID: 16522163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magneto-Hydrodynamic Fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles.
    Kumar V; Rezai P
    Biomed Microdevices; 2017 Jun; 19(2):39. PubMed ID: 28466285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.