These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31690451)

  • 1. The tetramerization domain of the tree shrew p53 protein displays unique thermostability despite sharing high sequence identity with the human p53 protein.
    Nakagawa N; Sakaguchi S; Nomura T; Kamada R; Omichinski JG; Sakaguchi K
    Biochem Biophys Res Commun; 2020 Jan; 521(3):681-686. PubMed ID: 31690451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Similar Tetramerization Domains from the p53 Protein of Different Mammalian Species Possess Varying Biophysical, Functional and Structural Properties.
    Sakaguchi S; Nakagawa N; Wahba HM; Wada J; Kamada R; Omichinski JG; Sakaguchi K
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38068946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the p53 tumor suppressor gene in tree shrew hepatocellular carcinoma associated with hepatitis B virus infection and intake of aflatoxin B1.
    Park US; Su JJ; Ban KC; Qin L; Lee EH; Lee YI
    Gene; 2000 Jun; 251(1):73-80. PubMed ID: 10863098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
    Kamada R; Nomura T; Anderson CW; Sakaguchi K
    J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function.
    Lubin DJ; Butler JS; Loh SN
    J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of p53 oligomers: Tetramerization of p53 impinges on its stability.
    Luwang JW; Nair AR; Natesh R
    Biochimie; 2021 Oct; 189():99-107. PubMed ID: 34197865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of tetramerization in p53 function.
    Chène P
    Oncogene; 2001 May; 20(21):2611-7. PubMed ID: 11420672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure.
    Nomura T; Kamada R; Ito I; Chuman Y; Shimohigashi Y; Sakaguchi K
    Biopolymers; 2009 Jan; 91(1):78-84. PubMed ID: 18781628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing the evolution of the p53 tetramerization domain.
    Joerger AC; Wilcken R; Andreeva A
    Structure; 2014 Sep; 22(9):1301-1310. PubMed ID: 25185827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and characterization of cholesteryl ester transfer transfer protein isolated from the tree shrew.
    Zeng W; Zhang J; Chen B; Wu G; Xue H
    Chin Med J (Engl); 2003 Jun; 116(6):928-31. PubMed ID: 12877809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer.
    Higashimoto Y; Asanomi Y; Takakusagi S; Lewis MS; Uosaki K; Durell SR; Anderson CW; Appella E; Sakaguchi K
    Biochemistry; 2006 Feb; 45(6):1608-19. PubMed ID: 16460008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tandem dimerization of the human p53 tetramerization domain stabilizes a primary dimer intermediate and dramatically enhances its oligomeric stability.
    Poon GM; Brokx RD; Sung M; Gariépy J
    J Mol Biol; 2007 Jan; 365(4):1217-31. PubMed ID: 17113101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tree shrew glioblastoma model recapitulates features of human glioblastoma.
    Tong Y; Hao J; Tu Q; Yu H; Yan L; Li Y; Lv L; Wang F; Iavarone A; Zhao X
    Oncotarget; 2017 Mar; 8(11):17897-17907. PubMed ID: 28199986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of p53 activity by IkappaBalpha: evidence suggesting a common phylogeny between NF-kappaB and p53 transcription factors.
    Dreyfus DH; Nagasawa M; Gelfand EW; Ghoda LY
    BMC Immunol; 2005 Jun; 6():12. PubMed ID: 15969767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of tumor-associated mutations in the p53 tetramerization domain on oligomerization state and transcriptional activity.
    Kamada R; Terai T; Nomura T; Chuman Y; Imagawa T; Sakaguchi K
    Adv Exp Med Biol; 2009; 611():567-8. PubMed ID: 19400316
    [No Abstract]   [Full Text] [Related]  

  • 16. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer.
    DiGiammarino EL; Lee AS; Cadwell C; Zhang W; Bothner B; Ribeiro RC; Zambetti G; Kriwacki RW
    Nat Struct Biol; 2002 Jan; 9(1):12-6. PubMed ID: 11753428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat.
    Gabizon R; Mor M; Rosenberg MM; Britan L; Hayouka Z; Kotler M; Shalev DE; Friedler A
    Biopolymers; 2008; 90(2):105-16. PubMed ID: 18189286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and characterization of APOBEC3 family in tree shrew.
    Luo MT; Fan Y; Mu D; Yao YG; Zheng YT
    Gene; 2018 Mar; 646():143-152. PubMed ID: 29292195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change in oligomerization specificity of the p53 tetramerization domain by hydrophobic amino acid substitutions.
    Stavridi ES; Chehab NH; Caruso LC; Halazonetis TD
    Protein Sci; 1999 Sep; 8(9):1773-9. PubMed ID: 10493578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization.
    Shieh SY; Taya Y; Prives C
    EMBO J; 1999 Apr; 18(7):1815-23. PubMed ID: 10202145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.