These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 31690746)
1. Road related pollutants induced DNA damage in dragonfly nymphs (Odonata, Anisoptera) living in highway sedimentation ponds. Meland S; Gomes T; Petersen K; Håll J; Lund E; Kringstad A; Grung M Sci Rep; 2019 Nov; 9(1):16002. PubMed ID: 31690746 [TBL] [Abstract][Full Text] [Related]
2. Polycyclic aromatic hydrocarbons: bioaccumulation in dragonfly nymphs (Anisoptera), and determination of alkylated forms in sediment for an improved environmental assessment. Girardin V; Grung M; Meland S Sci Rep; 2020 Jul; 10(1):10958. PubMed ID: 32616737 [TBL] [Abstract][Full Text] [Related]
3. Water quality effects on dragonfly and damselfly nymph communities: A comparison of urban and natural ponds. Perron MAC; Pick FR Environ Pollut; 2020 Aug; 263(Pt B):114472. PubMed ID: 32298934 [TBL] [Abstract][Full Text] [Related]
4. PAH related effects on fish in sedimentation ponds for road runoff and potential transfer of PAHs from sediment to biota. Grung M; Petersen K; Fjeld E; Allan I; Christensen JH; Malmqvist LMV; Meland S; Ranneklev S Sci Total Environ; 2016 Oct; 566-567():1309-1317. PubMed ID: 27267726 [TBL] [Abstract][Full Text] [Related]
5. Alkylated Polycyclic Aromatic Compounds in Road Runoff Are an Environmental Risk and Should Be Included in Future Investigations. Grung M; Lindman S; Kringstad A; Girardin V; Meland S Environ Toxicol Chem; 2022 Aug; 41(8):1838-1850. PubMed ID: 35678208 [TBL] [Abstract][Full Text] [Related]
6. Highway stormwater ponds as islands of Odonata diversity in an agricultural landscape. Šigutová H; Pyszko P; Valušák J; Dolný A Sci Total Environ; 2022 Sep; 837():155774. PubMed ID: 35537507 [TBL] [Abstract][Full Text] [Related]
7. Developmental toxicity and DNA damage from exposure to parking lot runoff retention pond samples in the Japanese medaka (Oryzias latipes). Colton MD; Kwok KW; Brandon JA; Warren IH; Ryde IT; Cooper EM; Hinton DE; Rittschof D; Meyer JN Mar Environ Res; 2014 Aug; 99():117-24. PubMed ID: 24816191 [TBL] [Abstract][Full Text] [Related]
8. Heavy metals, PAHs and toxicity in stormwater wet detention ponds. Wium-Andersen T; Nielsen AH; Hvitved-Jakobsen T; Vollertsen J Water Sci Technol; 2011; 64(2):503-11. PubMed ID: 22097026 [TBL] [Abstract][Full Text] [Related]
9. Occurrence and trophic transport of organic compounds in sedimentation ponds for road runoff. Grung M; Meland S; Ruus A; Ranneklev S; Fjeld E; Kringstad A; Rundberget JT; Dela Cruz M; Christensen JH Sci Total Environ; 2021 Jan; 751():141808. PubMed ID: 32882565 [TBL] [Abstract][Full Text] [Related]
10. A comparative study of macroinvertebrate biodiversity in highway stormwater ponds and natural ponds. Meland S; Sun Z; Sokolova E; Rauch S; Brittain JE Sci Total Environ; 2020 Oct; 740():140029. PubMed ID: 32559535 [TBL] [Abstract][Full Text] [Related]
12. Density-Dependent Cannibalism in Dragonfly Nymphs (Odonata: Anisoptera) Overwintering in Temperate Freshwater Ponds. Clark C; Hossie TJ; Beresford DV Environ Entomol; 2021 Dec; 50(6):1483-1489. PubMed ID: 34492102 [TBL] [Abstract][Full Text] [Related]
13. Causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt. Part I: polycyclic aromatic hydrocarbons and metals. Bartlett AJ; Rochfort Q; Brown LR; Marsalek J Sci Total Environ; 2012 Jan; 414():227-37. PubMed ID: 22154212 [TBL] [Abstract][Full Text] [Related]
14. Source apportionment and distribution of polycyclic aromatic hydrocarbons, risk considerations, and management implications for urban stormwater pond sediments in Minnesota, USA. Crane JL Arch Environ Contam Toxicol; 2014 Feb; 66(2):176-200. PubMed ID: 24310205 [TBL] [Abstract][Full Text] [Related]
15. Screening-level ecological and human health risk assessment of polycyclic aromatic hydrocarbons in stormwater detention pond sediments of Coastal South Carolina, USA. Weinstein JE; Crawford KD; Garner TR; Flemming AJ J Hazard Mater; 2010 Jun; 178(1-3):906-16. PubMed ID: 20211519 [TBL] [Abstract][Full Text] [Related]
16. Assessing urban stormwater toxicity: methodology evolution from point observations to longitudinal profiling. Grapentine L; Rochfort Q; Marsalek J Water Sci Technol; 2008; 57(9):1375-81. PubMed ID: 18496002 [TBL] [Abstract][Full Text] [Related]
17. From streets to streams: assessing the toxicity potential of urban sediment by particle size. Selbig WR; Bannerman R; Corsi SR Sci Total Environ; 2013 Feb; 444():381-91. PubMed ID: 23280296 [TBL] [Abstract][Full Text] [Related]
18. Causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt. Part II: salts, nutrients, and water quality. Bartlett AJ; Rochfort Q; Brown LR; Marsalek J Sci Total Environ; 2012 Jan; 414():238-47. PubMed ID: 22154214 [TBL] [Abstract][Full Text] [Related]
19. Can information from citizen science data be used to predict biodiversity in stormwater ponds? Johansson F; Heino J; Coiffard P; Svanbäck R; Wester J; Bini LM Sci Rep; 2020 Jun; 10(1):9380. PubMed ID: 32523129 [TBL] [Abstract][Full Text] [Related]
20. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Brown JN; Peake BM Sci Total Environ; 2006 Apr; 359(1-3):145-55. PubMed ID: 16014309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]