These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31690750)

  • 1. Proof-of-Concept Study of Drug Brain Permeability Between in Vivo Human Brain and an in Vitro iPSCs-Human Blood-Brain Barrier Model.
    Roux GL; Jarray R; Guyot AC; Pavoni S; Costa N; Théodoro F; Nassor F; Pruvost A; Tournier N; Kiyan Y; Langer O; Yates F; Deslys JP; Mabondzo A
    Sci Rep; 2019 Nov; 9(1):16310. PubMed ID: 31690750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Human in vitro Brain-blood Barrier Model from Induced Pluripotent Stem Cell-derived Endothelial Cells to Predict the in vivo Permeability of Drugs.
    Li Y; Sun X; Liu H; Huang L; Meng G; Ding Y; Su W; Lu J; Gong S; Terstappen GC; Zhang R; Zhang W
    Neurosci Bull; 2019 Dec; 35(6):996-1010. PubMed ID: 31079318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of in vitro cell-based human blood-brain barrier model using clinical positron emission tomography radioligands to predict in vivo human brain penetration.
    Mabondzo A; Bottlaender M; Guyot AC; Tsaouin K; Deverre JR; Balimane PV
    Mol Pharm; 2010 Oct; 7(5):1805-15. PubMed ID: 20795735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Drug Permeability Using
    Ohshima M; Kamei S; Fushimi H; Mima S; Yamada T; Yamamoto T
    Biores Open Access; 2019; 8(1):200-209. PubMed ID: 31737437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening.
    Wang YI; Abaci HE; Shuler ML
    Biotechnol Bioeng; 2017 Jan; 114(1):184-194. PubMed ID: 27399645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of drug penetration into the brain: a double study by in vivo imaging with positron emission tomography and using an in vitro model of the human blood-brain barrier.
    Josserand V; Pélerin H; de Bruin B; Jego B; Kuhnast B; Hinnen F; Ducongé F; Boisgard R; Beuvon F; Chassoux F; Daumas-Duport C; Ezan E; Dollé F; Mabondzo A; Tavitian B
    J Pharmacol Exp Ther; 2006 Jan; 316(1):79-86. PubMed ID: 16210395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mimicking brain tissue binding in an in vitro model of the blood-brain barrier illustrates differences between in vitro and in vivo methods for assessing the rate of brain penetration.
    Heymans M; Sevin E; Gosselet F; Lundquist S; Culot M
    Eur J Pharm Biopharm; 2018 Jun; 127():453-461. PubMed ID: 29602020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human iPSC-Derived Blood-Brain Barrier Models: Valuable Tools for Preclinical Drug Discovery and Development?
    Appelt-Menzel A; Oerter S; Mathew S; Haferkamp U; Hartmann C; Jung M; Neuhaus W; Pless O
    Curr Protoc Stem Cell Biol; 2020 Dec; 55(1):e122. PubMed ID: 32956578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Cancer-Targeting Alkylphosphocholine Analogue Permeability Characteristics Using a Human Induced Pluripotent Stem Cell Blood-Brain Barrier Model.
    Clark PA; Al-Ahmad AJ; Qian T; Zhang RR; Wilson HK; Weichert JP; Palecek SP; Kuo JS; Shusta EV
    Mol Pharm; 2016 Sep; 13(9):3341-9. PubMed ID: 27421304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood-Brain Barrier and Neurodegenerative Diseases-Modeling with iPSC-Derived Brain Cells.
    Wu YC; Sonninen TM; Peltonen S; Koistinaho J; Lehtonen Š
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simplified, Fully Defined Differentiation Scheme for Producing Blood-Brain Barrier Endothelial Cells from Human iPSCs.
    Neal EH; Marinelli NA; Shi Y; McClatchey PM; Balotin KM; Gullett DR; Hagerla KA; Bowman AB; Ess KC; Wikswo JP; Lippmann ES
    Stem Cell Reports; 2019 Jun; 12(6):1380-1388. PubMed ID: 31189096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro-In Vivo Correlation of Blood-Brain Barrier Permeability of Drugs: A Feasibility Study Towards Development of Prediction Methods for Brain Drug Concentration in Humans.
    Ito R; Morio H; Baba T; Sakaguchi Y; Wakayama N; Isogai R; Yamaura Y; Komori T; Furihata T
    Pharm Res; 2022 Jul; 39(7):1575-1586. PubMed ID: 35288803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of an in Vitro Human Blood-Brain Barrier Model Derived from Induced Pluripotent Stem Cells and Comparison to a Porcine Cell-Based System.
    Di Marco A; Vignone D; Gonzalez Paz O; Fini I; Battista MR; Cellucci A; Bracacel E; Auciello G; Veneziano M; Khetarpal V; Rose M; Rosa A; Gloaguen I; Monteagudo E; Herbst T; Dominguez C; Muñoz-Sanjuán I
    Cells; 2020 Apr; 9(4):. PubMed ID: 32316221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells.
    Canfield SG; Stebbins MJ; Morales BS; Asai SW; Vatine GD; Svendsen CN; Palecek SP; Shusta EV
    J Neurochem; 2017 Mar; 140(6):874-888. PubMed ID: 27935037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in human iPSC-derived models of the blood-brain barrier.
    Workman MJ; Svendsen CN
    Fluids Barriers CNS; 2020 Apr; 17(1):30. PubMed ID: 32321511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood-brain barrier models: in vitro to in vivo translation in preclinical development of CNS-targeting biotherapeutics.
    Stanimirovic DB; Bani-Yaghoub M; Perkins M; Haqqani AS
    Expert Opin Drug Discov; 2015 Feb; 10(2):141-55. PubMed ID: 25388782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barrier Properties and Transcriptome Expression in Human iPSC-Derived Models of the Blood-Brain Barrier.
    Delsing L; Dönnes P; Sánchez J; Clausen M; Voulgaris D; Falk A; Herland A; Brolén G; Zetterberg H; Hicks R; Synnergren J
    Stem Cells; 2018 Dec; 36(12):1816-1827. PubMed ID: 30171748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of RARα, RARγ, or RXRα Increases Barrier Tightness in Human Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells.
    Stebbins MJ; Lippmann ES; Faubion MG; Daneman R; Palecek SP; Shusta EV
    Biotechnol J; 2018 Feb; 13(2):. PubMed ID: 28960887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of an in Vitro Blood-Brain Barrier Model in the Selection of Experimental Drug Candidates for the Treatment of Huntington's Disease.
    Di Marco A; Gonzalez Paz O; Fini I; Vignone D; Cellucci A; Battista MR; Auciello G; Orsatti L; Zini M; Monteagudo E; Khetarpal V; Rose M; Dominguez C; Herbst T; Toledo-Sherman L; Summa V; Muñoz-Sanjuán I
    Mol Pharm; 2019 May; 16(5):2069-2082. PubMed ID: 30916978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryopreservation of Brain Endothelial Cells Derived from Human Induced Pluripotent Stem Cells Is Enhanced by Rho-Associated Coiled Coil-Containing Kinase Inhibition.
    Wilson HK; Faubion MG; Hjortness MK; Palecek SP; Shusta EV
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1085-1094. PubMed ID: 27846787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.