These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
430 related articles for article (PubMed ID: 31691322)
1. A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to HIV prevention trials. Wu J; Chen MH; Schifano ED; Ibrahim JG; Fisher JD Stat Med; 2019 Dec; 38(30):5565-5586. PubMed ID: 31691322 [TBL] [Abstract][Full Text] [Related]
2. Bayesian Modeling and Inference for Nonignorably Missing Longitudinal Binary Response Data with Applications to HIV Prevention Trials. Wu J; Ibrahim JG; Chen MH; Schifano ED; Fisher JD Stat Sin; 2018 Oct; 28():1929-1963. PubMed ID: 30595637 [TBL] [Abstract][Full Text] [Related]
3. Testing modified zeros for Poisson regression models. Tang Y; Tang W Stat Methods Med Res; 2019; 28(10-11):3123-3141. PubMed ID: 30198417 [TBL] [Abstract][Full Text] [Related]
4. Empirical-likelihood-based criteria for model selection on marginal analysis of longitudinal data with dropout missingness. Chen C; Shen B; Zhang L; Xue Y; Wang M Biometrics; 2019 Sep; 75(3):950-965. PubMed ID: 31004449 [TBL] [Abstract][Full Text] [Related]
5. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses. Tang W; Lu N; Chen T; Wang W; Gunzler DD; Han Y; Tu XM Stat Med; 2015 Oct; 34(24):3235-45. PubMed ID: 26078035 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous Source Detection and Analysis Using a Zero-inflated Count Rate Model. Klumpp J; Brandl A Health Phys; 2015 Jul; 109(1):35-53. PubMed ID: 26011497 [TBL] [Abstract][Full Text] [Related]
7. Bivariate zero-inflated regression for count data: a Bayesian approach with application to plant counts. Majumdar A; Gries C Int J Biostat; 2010; 6(1):Article 27. PubMed ID: 21969981 [TBL] [Abstract][Full Text] [Related]
8. A robust Bayesian mixed effects approach for zero inflated and highly skewed longitudinal count data emanating from the zero inflated discrete Weibull distribution. Burger DA; Schall R; Ferreira JT; Chen DG Stat Med; 2020 Apr; 39(9):1275-1291. PubMed ID: 32092193 [TBL] [Abstract][Full Text] [Related]
9. Bayesian modeling and inference for clinical trials with partial retrieved data following dropout. Chen Q; Chen MH; Ohlssen D; Ibrahim JG Stat Med; 2013 Oct; 32(24):4180-95. PubMed ID: 23620446 [TBL] [Abstract][Full Text] [Related]
10. Bayesian latent-class mixed-effect hybrid models for dyadic longitudinal data with non-ignorable dropouts. Ahn J; Liu S; Wang W; Yuan Y Biometrics; 2013 Dec; 69(4):914-24. PubMed ID: 24328715 [TBL] [Abstract][Full Text] [Related]
11. Model selection in the weighted generalized estimating equations for longitudinal data with dropout. Gosho M Biom J; 2016 May; 58(3):570-87. PubMed ID: 26509243 [TBL] [Abstract][Full Text] [Related]
12. Bayesian Spatial Joint Model for Disease Mapping of Zero-Inflated Data with R-INLA: A Simulation Study and an Application to Male Breast Cancer in Iran. Asmarian N; Ayatollahi SMT; Sharafi Z; Zare N Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31766251 [TBL] [Abstract][Full Text] [Related]
13. Distribution-free model selection for longitudinal zero-inflated count data with missing responses and covariates. Chen CS; Shen CW Stat Med; 2022 Jul; 41(16):3180-3198. PubMed ID: 35429179 [TBL] [Abstract][Full Text] [Related]
14. Bayesian analysis for generalized linear models with nonignorably missing covariates. Huang L; Chen MH; Ibrahim JG Biometrics; 2005 Sep; 61(3):767-80. PubMed ID: 16135028 [TBL] [Abstract][Full Text] [Related]
15. Bayesian pattern-mixture models for dropout and intermittently missing data in longitudinal data analysis. Blozis SA Behav Res Methods; 2024 Mar; 56(3):1953-1967. PubMed ID: 37221346 [TBL] [Abstract][Full Text] [Related]
16. Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches. Chan JS Biom J; 2016 May; 58(3):549-69. PubMed ID: 26467236 [TBL] [Abstract][Full Text] [Related]
17. A general class of pattern mixture models for nonignorable dropout with many possible dropout times. Roy J; Daniels MJ Biometrics; 2008 Jun; 64(2):538-45. PubMed ID: 17900312 [TBL] [Abstract][Full Text] [Related]
18. Generalized partially linear single-index model for zero-inflated count data. Wang X; Zhang J; Yu L; Yin G Stat Med; 2015 Feb; 34(5):876-86. PubMed ID: 25421596 [TBL] [Abstract][Full Text] [Related]
19. Varying-coefficient models for longitudinal processes with continuous-time informative dropout. Su L; Hogan JW Biostatistics; 2010 Jan; 11(1):93-110. PubMed ID: 19837655 [TBL] [Abstract][Full Text] [Related]
20. Assessing missing data assumptions in longitudinal studies: an example using a smoking cessation trial. Yang X; Shoptaw S Drug Alcohol Depend; 2005 Mar; 77(3):213-25. PubMed ID: 15734221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]