These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31691387)

  • 1. Molecular Acceptors Based on a Triarylborane Core Unit for Organic Solar Cells.
    Yu Y; Meng B; Jäkle F; Liu J; Wang L
    Chemistry; 2020 Jan; 26(4):873-880. PubMed ID: 31691387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p-π Conjugated Polymers Based on Stable Triarylborane with n-Type Behavior in Optoelectronic Devices.
    Meng B; Ren Y; Liu J; Jäkle F; Wang L
    Angew Chem Int Ed Engl; 2018 Feb; 57(8):2183-2187. PubMed ID: 29314598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer Acceptors Containing B←N Units for Organic Photovoltaics.
    Zhao R; Liu J; Wang L
    Acc Chem Res; 2020 Aug; 53(8):1557-1567. PubMed ID: 32692535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonhalogenated-Solvent-Processed Efficient Polymer Solar Cells Enabled by Medium-Band-Gap A-π-D-π-A Small-Molecule Acceptors Based on a 6,12-Dihydro-diindolo[1,2-
    Chen L; Zeng M; Weng C; Tan S; Shen P
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48134-48146. PubMed ID: 31823611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing indacenodithiophene based non-fullerene acceptors with a donor-acceptor combined bridge for organic solar cells.
    Ans M; Ayub K; Bhatti IA; Iqbal J
    RSC Adv; 2019 Jan; 9(7):3605-3617. PubMed ID: 35518088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene]-Based A-π-D-π-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells.
    Wang W; Shen P; Dong X; Weng C; Wang G; Bin H; Zhang J; Zhang ZG; Li Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4614-4625. PubMed ID: 28098975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the optoelectronic properties of ZOPTAN core-based derivatives by varying acceptors to increase efficiency of organic solar cell.
    Salim M; Rafiq M; El-Badry YA; Khera RA; Khalid M; Iqbal J
    J Mol Model; 2021 Oct; 27(11):316. PubMed ID: 34628569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyridalthiadiazole acceptor-functionalized triarylboranes with multi-responsive optoelectronic characteristics.
    Yin X; Liu K; Ren Y; Lalancette RA; Loo YL; Jäkle F
    Chem Sci; 2017 Aug; 8(8):5497-5505. PubMed ID: 30155227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Push-Pull Type Non-Fullerene Acceptors for Polymer Solar Cells: Effect of the Donor Core.
    Kang Z; Chen SC; Ma Y; Wang J; Zheng Q
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24771-24777. PubMed ID: 28675932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing of non-fullerene 3D star-shaped acceptors for organic solar cells.
    Ans M; Iqbal J; Eliasson B; Saif MJ; Javed HMA; Ayub K
    J Mol Model; 2019 Apr; 25(5):129. PubMed ID: 31025204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Efficient All-Polymer Solar Cells via Halogenation on Polymer Acceptors.
    Li Y; Jia Z; Zhang Q; Wu Z; Qin H; Yang J; Wen S; Woo HY; Ma W; Yang R; Yuan J
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33028-33038. PubMed ID: 32583664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing indenothiophene-based acceptor materials with efficient photovoltaic parameters for fullerene-free organic solar cells.
    Afzal Z; Hussain R; Khan MU; Khalid M; Iqbal J; Alvi MU; Adnan M; Ahmed M; Mehboob MY; Hussain M; Tariq CJ
    J Mol Model; 2020 May; 26(6):137. PubMed ID: 32405764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing dithienonaphthalene based acceptor materials with promising photovoltaic parameters for organic solar cells.
    Ans M; Iqbal J; Bhatti IA; Ayub K
    RSC Adv; 2019 Oct; 9(59):34496-34505. PubMed ID: 35529957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An A-D-A'-D-A type small molecule acceptor with a broad absorption spectrum for organic solar cells.
    Miao J; Meng B; Liu J; Wang L
    Chem Commun (Camb); 2018 Jan; 54(3):303-306. PubMed ID: 29239415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Monofluorinated Positions at the End-Capping Groups on the Performances of Twisted Non-Fullerene Acceptor-Based Polymer Solar Cells.
    Wu H; Zhao B; Zhao H; Wang L; Wang W; Cong Z; Liu J; Ma W; Gao C
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):789-797. PubMed ID: 31801347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the Isomerized Thiophene-Fused Ending Groups on the Performances of Twisted Non-Fullerene Acceptor-Based Polymer Solar Cells.
    Wu H; Bian Q; Zhao B; Zhao H; Wang L; Wang W; Cong Z; Liu J; Ma W; Gao C
    ACS Appl Mater Interfaces; 2020 May; 12(21):23904-23913. PubMed ID: 32362118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and photophysical characterization of isoindigo building blocks as molecular acceptors for organic photovoltaics.
    Dinçalp H; Saltan GM; Zafer C; Mutlu A
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Sep; 202():196-206. PubMed ID: 29787916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Strategy To Design Novel n-Type Copolymers Based on Anthracene Diimide and Pyrido[2,3-g]quinoline Diimide for Organic Solar Cells.
    Fu Z; Shen W; Tang X; He M; He R; Li M
    J Phys Chem A; 2015 Jul; 119(26):6884-96. PubMed ID: 26038956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Panchromatic Organoboron Molecules with Tunable Absorption Spectra.
    Liu F; Liu J; Wang L
    Chem Asian J; 2020 Oct; 15(20):3314-3320. PubMed ID: 32798275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.