These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31691950)
1. Gelatin interpenetration in poly N-isopropylacrylamide network reduces the compressive modulus of the scaffold: A property employed to mimic hepatic matrix stiffness. Sarkar J; Kamble SC; Patil R; Kumar A; Gosavi SW Biotechnol Bioeng; 2020 Feb; 117(2):567-579. PubMed ID: 31691950 [TBL] [Abstract][Full Text] [Related]
2. Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications. Jain E; Srivastava A; Kumar A J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S173-9. PubMed ID: 18597161 [TBL] [Abstract][Full Text] [Related]
3. Combined Effect of Cryogel Matrix and Temperature-Reversible Soluble-Insoluble Polymer for the Development of in Vitro Human Liver Tissue. Kumari J; Karande AA; Kumar A ACS Appl Mater Interfaces; 2016 Jan; 8(1):264-77. PubMed ID: 26654271 [TBL] [Abstract][Full Text] [Related]
4. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering. Chen CH; Kuo CY; Wang YJ; Chen JP Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27886065 [TBL] [Abstract][Full Text] [Related]
5. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [TBL] [Abstract][Full Text] [Related]
6. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration. Kao HH; Kuo CY; Chen KS; Chen JP Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547444 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies. Chang KH; Liao HT; Chen JP Acta Biomater; 2013 Nov; 9(11):9012-26. PubMed ID: 23851171 [TBL] [Abstract][Full Text] [Related]
8. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells. Singh D; Zo SM; Kumar A; Han SS J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding. Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987 [TBL] [Abstract][Full Text] [Related]
10. Shape memory injectable cryogel based on carboxymethyl chitosan/gelatin for minimally invasive tissue engineering: In vitro and in vivo assays. Olov N; Mirzadeh H; Moradi R; Rajabi S; Bagheri-Khoulenjani S J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2438-2451. PubMed ID: 35661396 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications. Sharma A; Bhat S; Nayak V; Kumar A Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering. Kuo CY; Chen CH; Hsiao CY; Chen JP Carbohydr Polym; 2015 Mar; 117():722-730. PubMed ID: 25498693 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569 [TBL] [Abstract][Full Text] [Related]
15. The enhancement of differentiating adipose derived mesenchymal stem cells toward hepatocyte like cells using gelatin cryogel scaffold. Ghaderi Gandomani M; Sahebghadam Lotfi A; Kordi Tamandani D; Arjmand S; Alizadeh S Biochem Biophys Res Commun; 2017 Sep; 491(4):1000-1006. PubMed ID: 28778389 [TBL] [Abstract][Full Text] [Related]
16. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds. Soares JS; Zhang W; Sacks MS Acta Biomater; 2017 Mar; 51():220-236. PubMed ID: 28063987 [TBL] [Abstract][Full Text] [Related]
17. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Daniele MA; Adams AA; Naciri J; North SH; Ligler FS Biomaterials; 2014 Feb; 35(6):1845-56. PubMed ID: 24314597 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel: a step towards designing a novel cell scaffold. Srivastava A; Kumar A J Biomater Sci Polym Ed; 2009; 20(10):1393-415. PubMed ID: 19622279 [TBL] [Abstract][Full Text] [Related]
19. Development of decellularized meniscus extracellular matrix and gelatin/chitosan scaffolds for meniscus tissue engineering. Yu Z; Lili J; Tiezheng Z; Li S; Jianzhuang W; Haichao D; Kedong S; Tianqing L Biomed Mater Eng; 2019; 30(2):125-132. PubMed ID: 30741661 [TBL] [Abstract][Full Text] [Related]
20. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration. Gu L; Zhang J; Li L; Du Z; Cai Q; Yang X Biomed Mater; 2019 Apr; 14(4):045001. PubMed ID: 30939454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]