BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31691953)

  • 1. Three-dimensional biomimetic hyaluronic acid hydrogels to investigate glioblastoma stem cell behaviors.
    Nakod PS; Kim Y; Rao SS
    Biotechnol Bioeng; 2020 Feb; 117(2):511-522. PubMed ID: 31691953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells.
    Wang K; Kievit FM; Erickson AE; Silber JR; Ellenbogen RG; Zhang M
    Adv Healthc Mater; 2016 Dec; 5(24):3173-3181. PubMed ID: 27805789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic models to examine microenvironmental regulation of glioblastoma stem cells.
    Nakod PS; Kim Y; Rao SS
    Cancer Lett; 2018 Aug; 429():41-53. PubMed ID: 29746930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels.
    Li Q; Lin H; Wang O; Qiu X; Kidambi S; Deleyrolle LP; Reynolds BA; Lei Y
    Sci Rep; 2016 Aug; 6():31915. PubMed ID: 27549983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular Hyaluronic Acid Influences the Efficacy of EGFR Tyrosine Kinase Inhibitors in a Biomaterial Model of Glioblastoma.
    Pedron S; Hanselman JS; Schroeder MA; Sarkaria JN; Harley BAC
    Adv Healthc Mater; 2017 Nov; 6(21):. PubMed ID: 28766870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting Hyaluronan Interactions for Glioblastoma Stem Cell Therapy.
    Hartheimer JS; Park S; Rao SS; Kim Y
    Cancer Microenviron; 2019 Apr; 12(1):47-56. PubMed ID: 31079324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix Hyaluronic Acid and Hypoxia Influence a CD133
    Chen JE; Leary S; Barnhouse V; Sarkaria JN; Harley BAC
    Tissue Eng Part A; 2022 Apr; 28(7-8):330-340. PubMed ID: 34435883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyaluronic-Acid Based Hydrogels for 3-Dimensional Culture of Patient-Derived Glioblastoma Cells.
    Xiao W; Ehsanipour A; Sohrabi A; Seidlits SK
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Hyaluronic Acid and Glioblastoma Cell Coculture on the Formation of Endothelial Cell Networks in Gelatin Hydrogels.
    Ngo MT; Harley BA
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28941173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-Mimetic 3D Culture Platforms Allow Investigation of Cooperative Effects of Extracellular Matrix Features on Therapeutic Resistance in Glioblastoma.
    Xiao W; Zhang R; Sohrabi A; Ehsanipour A; Sun S; Liang J; Walthers CM; Ta L; Nathanson DA; Seidlits SK
    Cancer Res; 2018 Mar; 78(5):1358-1370. PubMed ID: 29282221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype.
    Liu YC; Lee IC; Chen PY
    J Neurooncol; 2018 May; 137(3):511-522. PubMed ID: 29357090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid.
    Pedron S; Becka E; Harley BA
    Biomaterials; 2013 Oct; 34(30):7408-17. PubMed ID: 23827186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stemness Marker Detection in the Periphery of Glioblastoma and Ability of Glioblastoma to Generate Glioma Stem Cells: Clinical Correlations.
    Raysi Dehcordi S; Ricci A; Di Vitantonio H; De Paulis D; Luzzi S; Palumbo P; Cinque B; Tempesta D; Coletti G; Cipolloni G; Cifone MG; Galzio R
    World Neurosurg; 2017 Sep; 105():895-905. PubMed ID: 28559081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip perivascular
    Gerigk M; Bulstrode H; Shi HH; Tönisen F; Cerutti C; Morrison G; Rowitch D; Huang YYS
    Lab Chip; 2021 Jun; 21(12):2343-2358. PubMed ID: 33969368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture.
    Haley EM; Kim Y
    Cancer Lett; 2014 Apr; 346(1):1-5. PubMed ID: 24333730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyaluronic acid-functionalized gelatin hydrogels reveal extracellular matrix signals temper the efficacy of erlotinib against patient-derived glioblastoma specimens.
    Pedron S; Wolter GL; Chen JE; Laken SE; Sarkaria JN; Harley BAC
    Biomaterials; 2019 Oct; 219():119371. PubMed ID: 31352310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidic pH with coordinated reduction of basic fibroblast growth factor maintains the glioblastoma stem cell-like phenotype in vitro.
    Haley EM; Tilson SG; Triantafillu UL; Magrath JW; Kim Y
    J Biosci Bioeng; 2017 May; 123(5):634-641. PubMed ID: 28063758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating glioblastoma tumour sphere growth and migration in interaction with astrocytes using 3D collagen-hyaluronic acid hydrogels.
    Cui Y; Lee P; Reardon JJ; Wang A; Lynch S; Otero JJ; Sizemore G; Winter JO
    J Mater Chem B; 2023 Jun; 11(24):5442-5459. PubMed ID: 37159233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-dimensional (3D) organotypic microfluidic model for glioma stem cells - Vascular interactions.
    Truong D; Fiorelli R; Barrientos ES; Melendez EL; Sanai N; Mehta S; Nikkhah M
    Biomaterials; 2019 Apr; 198():63-77. PubMed ID: 30098794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.