These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31692150)

  • 1. Structure Selectivity of Alkaline Periodate Oxidation on Lignocellulose for Facile Isolation of Cellulose Nanocrystals.
    Liu P; Pang B; Dechert S; Zhang XC; Andreas LB; Fischer S; Meyer F; Zhang K
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):3218-3225. PubMed ID: 31692150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient, Self-Terminating Isolation of Cellulose Nanocrystals through Periodate Oxidation in Pickering Emulsions.
    Liu P; Pang B; Tian L; Schäfer T; Gutmann T; Liu H; Volkert CA; Buntkowsky G; Zhang K
    ChemSusChem; 2018 Oct; 11(20):3581-3585. PubMed ID: 30126073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration of Aqueous Periodate Solutions by Ozone Treatment: A Sustainable Approach for Dialdehyde Cellulose Production.
    Koprivica S; Siller M; Hosoya T; Roggenstein W; Rosenau T; Potthast A
    ChemSusChem; 2016 Apr; 9(8):825-33. PubMed ID: 26990816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile and Quantitative Method for Estimating the Isolation Degree of Cellulose Nanocrystals (CNCs) Suspensions.
    Lee M; Heo M; Lee H; Shin J
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation.
    Li B; Xu W; Kronlund D; Määttänen A; Liu J; Smått JH; Peltonen J; Willför S; Mu X; Xu C
    Carbohydr Polym; 2015 Nov; 133():605-12. PubMed ID: 26344319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Isolation Methods for Cellulose and Chitin Nanocrystals.
    Yang T; Qi H; Liu P; Zhang K
    Chempluschem; 2020 May; 85(5):1081-1088. PubMed ID: 32463585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method.
    Oun AA; Rhim JW
    Carbohydr Polym; 2017 Oct; 174():484-492. PubMed ID: 28821096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil-water stabilizer.
    Visanko M; Liimatainen H; Sirviö JA; Heiskanen JP; Niinimäki J; Hormi O
    Biomacromolecules; 2014 Jul; 15(7):2769-75. PubMed ID: 24946006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid-Free Preparation of Cellulose Nanocrystals by TEMPO Oxidation and Subsequent Cavitation.
    Zhou Y; Saito T; Bergström L; Isogai A
    Biomacromolecules; 2018 Feb; 19(2):633-639. PubMed ID: 29283555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels.
    Filpponen I; Argyropoulos DS
    Biomacromolecules; 2010 Apr; 11(4):1060-6. PubMed ID: 20235575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Modification of Cured Inorganic Foams with Cationic Cellulose Nanocrystals and Their Use as Reactive Filter Media for Anionic Dye Removal.
    Selkälä T; Suopajärvi T; Sirviö JA; Luukkonen T; Kinnunen P; de Carvalho ALCB; Liimatainen H
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27745-27757. PubMed ID: 32453939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review: Periodate oxidation of wood polysaccharides-Modulation of hierarchies.
    Nypelö T; Berke B; Spirk S; Sirviö JA
    Carbohydr Polym; 2021 Jan; 252():117105. PubMed ID: 33183584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter.
    Hemmati F; Jafari SM; Taheri RA
    Int J Biol Macromol; 2019 Sep; 137():374-381. PubMed ID: 31271799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel amphiphilic cellulose nanocrystals for pH-responsive Pickering emulsions.
    Li W; Ju B; Zhang S
    Carbohydr Polym; 2020 Feb; 229():115401. PubMed ID: 31826496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination.
    Sirviö JA; Visanko M; Laitinen O; Ämmälä A; Liimatainen H
    Carbohydr Polym; 2016 Jan; 136():581-7. PubMed ID: 26572390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of spherical cellulose nanocrystals with high purity by the composite enzymolysis of pulp fibers.
    Xu JT; Chen XQ
    Bioresour Technol; 2019 Nov; 291():121842. PubMed ID: 31377505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Citrate-based fluorophore-modified cellulose nanocrystals as a biocompatible fluorescent probe for detecting ferric ions and intracellular imaging.
    Chen H; Huang J; Hao B; Yang B; Chen S; Yang G; Xu J
    Carbohydr Polym; 2019 Nov; 224():115198. PubMed ID: 31472878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant-free emulsion Pickering polymerization stabilized by aldehyde-functionalized cellulose nanocrystals.
    Errezma M; Mabrouk AB; Magnin A; Dufresne A; Boufi S
    Carbohydr Polym; 2018 Dec; 202():621-630. PubMed ID: 30287043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents.
    Abitbol T; Palermo A; Moran-Mirabal JM; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3278-84. PubMed ID: 23952644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.