These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 31692165)

  • 1. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize.
    Zhang X; Mi Y; Mao H; Liu S; Chen L; Qin F
    Plant Biotechnol J; 2020 May; 18(5):1271-1283. PubMed ID: 31692165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings.
    Wang X; Wang H; Liu S; Ferjani A; Li J; Yan J; Yang X; Qin F
    Nat Genet; 2016 Oct; 48(10):1233-41. PubMed ID: 27526320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L.
    Liu S; Wang X; Wang H; Xin H; Yang X; Yan J; Li J; Tran LS; Shinozaki K; Yamaguchi-Shinozaki K; Qin F
    PLoS Genet; 2013; 9(9):e1003790. PubMed ID: 24086146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings.
    Mao H; Wang H; Liu S; Li Z; Yang X; Yan J; Li J; Tran LS; Qin F
    Nat Commun; 2015 Sep; 6():8326. PubMed ID: 26387805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress.
    Guo J; Li C; Zhang X; Li Y; Zhang D; Shi Y; Song Y; Li Y; Yang D; Wang T
    Plant Sci; 2020 Mar; 292():110380. PubMed ID: 32005385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings.
    Xiang Y; Sun X; Gao S; Qin F; Dai M
    Mol Plant; 2017 Mar; 10(3):456-469. PubMed ID: 27746300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis.
    Zhang P; Fan Y; Sun X; Chen L; Terzaghi W; Bucher E; Li L; Dai M
    Plant J; 2019 May; 98(4):697-713. PubMed ID: 30715761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural variations in the non-coding region of ZmNAC080308 contributes maintaining grain yield under drought stress in maize.
    Wang N; Cheng M; Chen Y; Liu B; Wang X; Li G; Zhou Y; Luo P; Xi Z; Yong H; Zhang D; Li M; Zhang X; Vicente FS; Hao Z; Li X
    BMC Plant Biol; 2021 Jun; 21(1):305. PubMed ID: 34193036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Analysis of TCP Family Genes in
    Ding S; Cai Z; Du H; Wang H
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31195663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic insight into changes of root architecture under drought stress in maize.
    Li C; Guo J; Wang D; Chen X; Guan H; Li Y; Zhang D; Liu X; He G; Wang T; Li Y
    Plant Cell Environ; 2023 Jun; 46(6):1860-1872. PubMed ID: 36785485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping.
    Thirunavukkarasu N; Hossain F; Arora K; Sharma R; Shiriga K; Mittal S; Mohan S; Namratha PM; Dogga S; Rani TS; Katragadda S; Rathore A; Shah T; Mohapatra T; Gupta HS
    BMC Genomics; 2014 Dec; 15(1):1182. PubMed ID: 25539911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide association studies of drought-related metabolic changes in maize using an enlarged SNP panel.
    Zhang X; Warburton ML; Setter T; Liu H; Xue Y; Yang N; Yan J; Xiao Y
    Theor Appl Genet; 2016 Aug; 129(8):1449-63. PubMed ID: 27121008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings.
    Wang Z; Zhao X; Ren Z; Abou-Elwafa SF; Pu X; Zhu Y; Dou D; Su H; Cheng H; Liu Z; Chen Y; Wang E; Shao R; Ku L
    Plant Cell Environ; 2022 Feb; 45(2):312-328. PubMed ID: 34873716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positional cloning and characterization reveal the role of a miRNA precursor gene ZmLRT in the regulation of lateral root number and drought tolerance in maize.
    Zhang M; Chen Y; Xing H; Ke W; Shi Y; Sui Z; Xu R; Gao L; Guo G; Li J; Xing J; Zhang Y
    J Integr Plant Biol; 2023 Mar; 65(3):772-790. PubMed ID: 36354146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.).
    Zhao C; Yang M; Wu X; Wang Y; Zhang R
    Plant Physiol Biochem; 2021 Nov; 168():128-142. PubMed ID: 34628174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways.
    Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive expression of aldose reductase 1 from Zea mays exacerbates salt and drought sensitivity of transgenic Escherichia coli and Arabidopsis.
    Yang X; Zhu K; Guo X; Pei Y; Zhao M; Song X; Li Y; Liu S; Li J
    Plant Physiol Biochem; 2020 Nov; 156():436-444. PubMed ID: 33022480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis.
    Li Z; Liu C; Zhang Y; Wang B; Ran Q; Zhang J
    J Exp Bot; 2019 Oct; 70(19):5471-5486. PubMed ID: 31267122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.