These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31692192)

  • 1. Top-down versus bottom-up attention differentially modulate frontal-parietal connectivity.
    Bowling JT; Friston KJ; Hopfinger JB
    Hum Brain Mapp; 2020 Mar; 41(4):928-942. PubMed ID: 31692192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.
    Meyer KN; Du F; Parks E; Hopfinger JB
    Neuropsychologia; 2018 Mar; 111():307-316. PubMed ID: 29425803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional connectivity between ventral and dorsal frontoparietal networks underlies stimulus-driven and working memory-driven sources of visual distraction.
    Greene CM; Soto D
    Neuroimage; 2014 Jan; 84():290-8. PubMed ID: 24004695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the dorsal attention network in distracter suppression based on features.
    Lanssens A; Pizzamiglio G; Mantini D; Gillebert CR
    Cogn Neurosci; 2020 Jan; 11(1-2):37-46. PubMed ID: 31674886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
    Vossel S; Weidner R; Driver J; Friston KJ; Fink GR
    J Neurosci; 2012 Aug; 32(31):10637-48. PubMed ID: 22855813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Causal Modelling of Active Vision.
    Parr T; Mirza MB; Cagnan H; Friston KJ
    J Neurosci; 2019 Aug; 39(32):6265-6275. PubMed ID: 31182633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional connectivity of dorsal and ventral frontoparietal seed regions during auditory orienting.
    Rossi S; Huang S; Furtak SC; Belliveau JW; Ahveninen J
    Brain Res; 2014 Oct; 1583():159-68. PubMed ID: 25128464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting category specific visual information: Top-down and bottom-up control of object based attention.
    Corradi-Dell'Acqua C; Fink GR; Weidner R
    Conscious Cogn; 2015 Sep; 35():330-41. PubMed ID: 25735196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-Dependent Changes in Frontal-Parietal Activation and Connectivity During Visual Search.
    Maximo JO; Neupane A; Saxena N; Joseph RM; Kana RK
    Brain Connect; 2016 May; 6(4):335-44. PubMed ID: 26729050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A matter of hand: Causal links between hand dominance, structural organization of fronto-parietal attention networks, and variability in behavioural responses to transcranial magnetic stimulation.
    Cazzoli D; Chechlacz M
    Cortex; 2017 Jan; 86():230-246. PubMed ID: 27405259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network.
    Battelli L; Grossman ED; Plow EB
    Brain Stimul; 2017; 10(2):263-269. PubMed ID: 27838275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory and visual connectivity gradients in frontoparietal cortex.
    Braga RM; Hellyer PJ; Wise RJ; Leech R
    Hum Brain Mapp; 2017 Jan; 38(1):255-270. PubMed ID: 27571304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontal cortical regions associated with attention connect more strongly to central than peripheral V1.
    Sims SA; Demirayak P; Cedotal S; Visscher KM
    Neuroimage; 2021 Sep; 238():118246. PubMed ID: 34111516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural basis of endogenous and exogenous spatial orienting. A functional MRI study.
    Rosen AC; Rao SM; Caffarra P; Scaglioni A; Bobholz JA; Woodley SJ; Hammeke TA; Cunningham JM; Prieto TE; Binder JR
    J Cogn Neurosci; 1999 Mar; 11(2):135-52. PubMed ID: 10198130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation during endogenous orienting of visual attention using symbolic pointers in the human parietal and frontal cortices: a functional magnetic resonance imaging study.
    Kato C; Matsuo K; Matsuzawa M; Moriya T; Glover GH; Nakai T
    Neurosci Lett; 2001 Nov; 314(1-2):5-8. PubMed ID: 11698133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causal Evidence for the Role of Neuronal Oscillations in Top-Down and Bottom-Up Attention.
    Riddle J; Hwang K; Cellier D; Dhanani S; D'Esposito M
    J Cogn Neurosci; 2019 May; 31(5):768-779. PubMed ID: 30726180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.
    Ester EF; Sutterer DW; Serences JT; Awh E
    J Neurosci; 2016 Aug; 36(31):8188-99. PubMed ID: 27488638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of rTMS conditioning over the fronto-parietal network on motor versus visual attention.
    Rounis E; Yarrow K; Rothwell JC
    J Cogn Neurosci; 2007 Mar; 19(3):513-24. PubMed ID: 17335398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.