These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31692209)

  • 1. Structure and Activity of the Thermophilic Tryptophan-6 Halogenase BorH.
    Lingkon K; Bellizzi JJ
    Chembiochem; 2020 Apr; 21(8):1121-1128. PubMed ID: 31692209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal.
    Moritzer AC; Minges H; Prior T; Frese M; Sewald N; Niemann HH
    J Biol Chem; 2019 Feb; 294(7):2529-2542. PubMed ID: 30559288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic and thermodynamic evidence of negative cooperativity of flavin and tryptophan binding in the flavin-dependent halogenases AbeH and BorH.
    Ashaduzzaman M; Lingkon K; De Silva AJ; Bellizzi JJ
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase.
    Shepherd SA; Menon BR; Fisk H; Struck AW; Levy C; Leys D; Micklefield J
    Chembiochem; 2016 May; 17(9):821-4. PubMed ID: 26840773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of FAD and tryptophan to the tryptophan 6-halogenase Thal is negatively coupled.
    Moritzer AC; Niemann HH
    Protein Sci; 2019 Dec; 28(12):2112-2118. PubMed ID: 31589794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan.
    Zhu X; De Laurentis W; Leang K; Herrmann J; Ihlefeld K; van Pée KH; Naismith JH
    J Mol Biol; 2009 Aug; 391(1):74-85. PubMed ID: 19501593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases.
    Yeh E; Blasiak LC; Koglin A; Drennan CL; Walsh CT
    Biochemistry; 2007 Feb; 46(5):1284-92. PubMed ID: 17260957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination.
    Neubauer PR; Widmann C; Wibberg D; Schröder L; Frese M; Kottke T; Kalinowski J; Niemann HH; Sewald N
    PLoS One; 2018; 13(5):e0196797. PubMed ID: 29746521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state kinetic analysis of halogenase-supporting flavin reductases BorF and AbeF reveals different kinetic mechanisms.
    De Silva AJ; Sehgal R; Kim J; Bellizzi JJ
    Arch Biochem Biophys; 2021 Jun; 704():108874. PubMed ID: 33862020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a Tryptophan 6-Halogenase from Streptomyces albus and Its Regioselectivity Determinants.
    Lee J; Kim J; Kim H; Kim EJ; Jeong HJ; Choi KY; Kim BG
    Chembiochem; 2020 May; 21(10):1446-1452. PubMed ID: 31916339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination.
    Dong C; Flecks S; Unversucht S; Haupt C; van Pée KH; Naismith JH
    Science; 2005 Sep; 309(5744):2216-9. PubMed ID: 16195462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling and regulation mechanisms of the flavin-dependent halogenase PyrH observed by infrared difference spectroscopy.
    Schroeder L; Diepold N; Gäfe S; Niemann HH; Kottke T
    J Biol Chem; 2024 Apr; 300(4):107210. PubMed ID: 38519030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific enzymatic chlorination of tryptophan and tryptophan derivatives.
    van Pée KH; Hölzer M
    Adv Exp Med Biol; 1999; 467():603-9. PubMed ID: 10721106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes.
    Menon BR; Latham J; Dunstan MS; Brandenburger E; Klemstein U; Leys D; Karthikeyan C; Greaney MF; Shepherd SA; Micklefield J
    Org Biomol Chem; 2016 Oct; 14(39):9354-9361. PubMed ID: 27714222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Insights into the Reaction of Chlorination of Tryptophan Catalyzed by Tryptophan 7-Halogenase.
    Karabencheva-Christova TG; Torras J; Mulholland AJ; Lodola A; Christov CZ
    Sci Rep; 2017 Dec; 7(1):17395. PubMed ID: 29234124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual substrate and halide versatility of phenolic halogenase PltM.
    Mori S; Pang AH; Thamban Chandrika N; Garneau-Tsodikova S; Tsodikov OV
    Nat Commun; 2019 Mar; 10(1):1255. PubMed ID: 30890712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis.
    Yeh E; Garneau S; Walsh CT
    Proc Natl Acad Sci U S A; 2005 Mar; 102(11):3960-5. PubMed ID: 15743914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting the low catalytic capability of flavin-dependent halogenases.
    Phintha A; Prakinee K; Jaruwat A; Lawan N; Visitsatthawong S; Kantiwiriyawanitch C; Songsungthong W; Trisrivirat D; Chenprakhon P; Mulholland A; van Pée KH; Chitnumsub P; Chaiyen P
    J Biol Chem; 2021; 296():100068. PubMed ID: 33465708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional insights into the self-sufficient flavin-dependent halogenase.
    Dai L; Li H; Dai S; Zhang Q; Zheng H; Hu Y; Guo RT; Chen CC
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129312. PubMed ID: 38216020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.