These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31692216)

  • 21. Asymmetric bioreduction of alkenes using ene-reductases YersER and KYE1 and effects of organic solvents.
    Yanto Y; Winkler CK; Lohr S; Hall M; Faber K; Bommarius AS
    Org Lett; 2011 May; 13(10):2540-3. PubMed ID: 21510626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric Ene-Reduction by F
    Kang SW; Antoney J; Lupton DW; Speight R; Scott C; Jackson CJ
    Chembiochem; 2023 Apr; 24(8):e202200797. PubMed ID: 36716144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The biochemical characterization of three imine-reducing enzymes from Streptosporangium roseum DSM43021, Streptomyces turgidiscabies and Paenibacillus elgii.
    Scheller PN; Nestl BM
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10509-10520. PubMed ID: 27464826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparative scale application of Mucor circinelloides ene-reductase and alcohol dehydrogenase activity for the asymmetric bioreduction of α,β-unsaturated γ-ketophosphonates.
    Janicki I; Kiełbasiński P; Szeląg J; Głębski A; Szczęsna-Antczak M
    Bioorg Chem; 2020 Mar; 96():103548. PubMed ID: 31982820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic Performance of a Class III Old Yellow Enzyme and Its Cysteine Variants.
    Scholtissek A; Gädke E; Paul CE; Westphal AH; van Berkel WJH; Tischler D
    Front Microbiol; 2018; 9():2410. PubMed ID: 30369915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases.
    Lauterbach L; Lenz O; Vincent KA
    FEBS J; 2013 Jul; 280(13):3058-68. PubMed ID: 23497170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changing the electron donor improves azoreductase dye degrading activity at neutral pH.
    Qi J; Paul CE; Hollmann F; Tischler D
    Enzyme Microb Technol; 2017 May; 100():17-19. PubMed ID: 28284307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family.
    Stuermer R; Hauer B; Hall M; Faber K
    Curr Opin Chem Biol; 2007 Apr; 11(2):203-13. PubMed ID: 17353140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Enzymatic Cofactor Regeneration System for the in-Vitro Reduction of Isolated C=C Bonds by Geranylgeranyl Reductases.
    Niese R; Deshpande K; Müller M
    Chembiochem; 2024 Jan; 25(1):e202300409. PubMed ID: 37948327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox Out of the Box: Catalytic Versatility Across NAD(P)H-Dependent Oxidoreductases.
    Roth S; Niese R; Müller M; Hall M
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202314740. PubMed ID: 37924279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes.
    Knaus T; Paul CE; Levy CW; de Vries S; Mutti FG; Hollmann F; Scrutton NS
    J Am Chem Soc; 2016 Jan; 138(3):1033-9. PubMed ID: 26727612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhodococcus strains as source for ene-reductase activity.
    Chen BS; Médici R; van der Helm MP; van Zwet Y; Gjonaj L; van der Geest R; Otten LG; Hanefeld U
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5545-5556. PubMed ID: 29705954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocatalytic reduction of activated CC-bonds and beyond: emerging trends.
    Winkler CK; Faber K; Hall M
    Curr Opin Chem Biol; 2018 Apr; 43():97-105. PubMed ID: 29275291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of engineered carbonyl reductase from Ogataea minuta in Rhodococcus opacus and its application to whole-cell bioconversion in anhydrous solvents.
    Honda K; Ono T; Okano K; Miyake R; Dekishima Y; Kawabata H
    J Biosci Bioeng; 2019 Feb; 127(2):145-149. PubMed ID: 30075940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asymmetric Ene-Reduction of α,β-Unsaturated Compounds by F
    Kang SW; Antoney J; Frkic RL; Lupton DW; Speight R; Scott C; Jackson CJ
    Biochemistry; 2023 Feb; 62(3):873-891. PubMed ID: 36637210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis.
    Kumar Roy T; Sreedharan R; Ghosh P; Gandhi T; Maiti D
    Chemistry; 2022 Apr; 28(21):e202103949. PubMed ID: 35133702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic and nuclear magnetic resonance study of the interaction of NADP+ and NADPH with chicken liver fatty acid synthase.
    Leanz GF; Hammes GG
    Biochemistry; 1986 Sep; 25(19):5617-24. PubMed ID: 3535882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extended Catalytic Scope of a Well-Known Enzyme: Asymmetric Reduction of Iminium Substrates by Glucose Dehydrogenase.
    Roth S; Präg A; Wechsler C; Marolt M; Ferlaino S; Lüdeke S; Sandon N; Wetzl D; Iding H; Wirz B; Müller M
    Chembiochem; 2017 Sep; 18(17):1703-1706. PubMed ID: 28722796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization and Application of a Robust Glucose Dehydrogenase from
    Shah S; Sunder AV; Singh P; Wangikar PP
    Indian J Microbiol; 2020 Mar; 60(1):87-95. PubMed ID: 32089578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.