BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31692236)

  • 1. Enhancing Energy Storage Devices with Biomacromolecules in Hybrid Electrodes.
    Ajjan FN; Mecerreyes D; Inganäs O
    Biotechnol J; 2019 Dec; 14(12):e1900062. PubMed ID: 31692236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks.
    Milczarek G; Inganäs O
    Science; 2012 Mar; 335(6075):1468-71. PubMed ID: 22442478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials.
    Kim SK; Kim YK; Lee H; Lee SB; Park HS
    ChemSusChem; 2014 Apr; 7(4):1094-101. PubMed ID: 24678040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Energy Storage Electrodes via Citrus Fruits Derived Carbon: A Minireview.
    Ehsani A; Parsimehr H
    Chem Rec; 2020 Aug; 20(8):820-830. PubMed ID: 32212373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 25th anniversary article: organic photovoltaic modules and biopolymer supercapacitors for supply of renewable electricity: a perspective from Africa.
    Inganäs O; Admassie S
    Adv Mater; 2014 Feb; 26(6):830-48. PubMed ID: 24510661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignin Modification for Biopolymer/Conjugated Polymer Hybrids as Renewable Energy Storage Materials.
    Nilsson TY; Wagner M; Inganäs O
    ChemSusChem; 2015 Dec; 8(23):4081-5. PubMed ID: 26507942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pumpkin-Derived Porous Carbon for Supercapacitors with High Performance.
    Bai S; Tan G; Li X; Zhao Q; Meng Y; Wang Y; Zhang Y; Xiao D
    Chem Asian J; 2016 Jun; 11(12):1828-36. PubMed ID: 27124360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced materials for energy storage.
    Liu C; Li F; Ma LP; Cheng HM
    Adv Mater; 2010 Feb; 22(8):E28-62. PubMed ID: 20217798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Waste to Wealth": Lignin as a Renewable Building Block for Energy Harvesting/Storage and Environmental Remediation.
    Wang D; Lee SH; Kim J; Park CB
    ChemSusChem; 2020 Jun; 13(11):2807-2827. PubMed ID: 32180357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic Liquids for Supercapacitor Applications.
    Salanne M
    Top Curr Chem (Cham); 2017 Jun; 375(3):63. PubMed ID: 28560657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of carbon materials for flexible electrochemical capacitors.
    He Y; Chen W; Gao C; Zhou J; Li X; Xie E
    Nanoscale; 2013 Oct; 5(19):8799-820. PubMed ID: 23934430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design.
    Sumboja A; Liu J; Zheng WG; Zong Y; Zhang H; Liu Z
    Chem Soc Rev; 2018 Jul; 47(15):5919-5945. PubMed ID: 29947399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-doped graphene materials for supercapacitor applications.
    Lu Y; Huang Y; Zhang M; Chen Y
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1134-44. PubMed ID: 24749417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A metal-free organic-inorganic aqueous flow battery.
    Huskinson B; Marshak MP; Suh C; Er S; Gerhardt MR; Galvin CJ; Chen X; Aspuru-Guzik A; Gordon RG; Aziz MJ
    Nature; 2014 Jan; 505(7482):195-8. PubMed ID: 24402280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices.
    Kim YJ; Wu W; Chun SE; Whitacre JF; Bettinger CJ
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):20912-7. PubMed ID: 24324163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems.
    Lin CF; Qi Y; Gregorczyk K; Lee SB; Rubloff GW
    Acc Chem Res; 2018 Jan; 51(1):97-106. PubMed ID: 29293316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials.
    Sun H; He W; Zong C; Lu L
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2261-8. PubMed ID: 23452310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.