These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31692236)

  • 21. On the configuration of supercapacitors for maximizing electrochemical performance.
    Zhang J; Zhao XS
    ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corn-based Electrochemical Energy Storage Devices.
    Parsimehr H; Ehsani A
    Chem Rec; 2020 Oct; 20(10):1163-1180. PubMed ID: 32767656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon Redox-Polymer-Gel Hybrid Supercapacitors.
    Vlad A; Singh N; Melinte S; Gohy JF; Ajayan PM
    Sci Rep; 2016 Feb; 6():22194. PubMed ID: 26917470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors.
    Du X; Lin Z; Wang X; Zhang K; Hu H; Dai S
    Molecules; 2023 Sep; 28(17):. PubMed ID: 37687261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical energy engineering: a new frontier of chemical engineering innovation.
    Gu S; Xu B; Yan Y
    Annu Rev Chem Biomol Eng; 2014; 5():429-54. PubMed ID: 24702299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Pseudocapacitive Performance of MnO2 Nanowires on Recyclable Electrodes.
    Han ZJ; Bo Z; Seo DH; Pineda S; Wang Y; Yang HY; Ostrikov KK
    ChemSusChem; 2016 May; 9(9):1020-6. PubMed ID: 27059434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.
    Achilleos DS; Hatton TA
    J Colloid Interface Sci; 2015 Jun; 447():282-301. PubMed ID: 25711524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria.
    Malvankar NS; Mester T; Tuominen MT; Lovley DR
    Chemphyschem; 2012 Feb; 13(2):463-8. PubMed ID: 22253215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity.
    Boesenberg U; Marcus MA; Shukla AK; Yi T; McDermott E; Teh PF; Srinivasan M; Moewes A; Cabana J
    Sci Rep; 2014 Nov; 4():7133. PubMed ID: 25410966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in biopolymers-based carbon materials for supercapacitors.
    Li H; Li Y; Zhu S; Li Y; Zada I; Li Y
    RSC Adv; 2023 Nov; 13(47):33318-33335. PubMed ID: 38025848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox Species of Redox Flow Batteries: A Review.
    Pan F; Wang Q
    Molecules; 2015 Nov; 20(11):20499-517. PubMed ID: 26593894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A compact analytical formalism for current transients in electrochemical systems.
    Nair PR; Alam MA
    Analyst; 2013 Jan; 138(2):525-38. PubMed ID: 23166907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage.
    Mukhopadhyay A; Jiao Y; Katahira R; Ciesielski PN; Himmel M; Zhu H
    Nano Lett; 2017 Dec; 17(12):7897-7907. PubMed ID: 29161046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lignin biopolymer: the material of choice for advanced lithium-based batteries.
    Baloch M; Labidi J
    RSC Adv; 2021 Jul; 11(38):23644-23653. PubMed ID: 35479805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charge storage properties of biopolymer electrodes with (sub)tropical lignins.
    Admassie S; Nilsson TY; Inganäs O
    Phys Chem Chem Phys; 2014 Dec; 16(45):24681-4. PubMed ID: 25328039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The rise of organic electrode materials for energy storage.
    Schon TB; McAllister BT; Li PF; Seferos DS
    Chem Soc Rev; 2016 Nov; 45(22):6345-6404. PubMed ID: 27273252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.