BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31692327)

  • 1. Quinary Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation.
    Liu Z; Huang YC; Wang Y; Cen J; Yang H; Chen X; Tong X; Su D; Dong CL; Wang S
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44018-44025. PubMed ID: 31692327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-Plasma-Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation.
    Liu R; Wang Y; Liu D; Zou Y; Wang S
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28589657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ostwald Ripening Driven Exfoliation to Ultrathin Layered Double Hydroxides Nanosheets for Enhanced Oxygen Evolution Reaction.
    Chen B; Zhang Z; Kim S; Lee S; Lee J; Kim W; Yong K
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44518-44526. PubMed ID: 30508374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts.
    Wang Y; Zhang Y; Liu Z; Xie C; Feng S; Liu D; Shao M; Wang S
    Angew Chem Int Ed Engl; 2017 May; 56(21):5867-5871. PubMed ID: 28429388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled Self-Assembled NiFe Layered Double Hydroxides/Reduced Graphene Oxide Nanohybrids Based on the Solid-Phase Exfoliation Strategy as an Excellent Electrocatalyst for the Oxygen Evolution Reaction.
    Shen J; Zhang P; Xie R; Chen L; Li M; Li J; Ji B; Hu Z; Li J; Song L; Wu Y; Zhao X
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13545-13556. PubMed ID: 30892865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A General Method to Ultrathin Bimetal-MOF Nanosheets Arrays via In Situ Transformation of Layered Double Hydroxides Arrays.
    Wang B; Shang J; Guo C; Zhang J; Zhu F; Han A; Liu J
    Small; 2019 Feb; 15(6):e1804761. PubMed ID: 30645051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thin NiFeCr-LDHs nanosheets promoted by g-C
    Chen G; Liu J; Li Y; Anand P; Wu W; Chen Y; Xu C
    Nanotechnology; 2019 Dec; 30(49):494001. PubMed ID: 31443099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting.
    Dinh KN; Zheng P; Dai Z; Zhang Y; Dangol R; Zheng Y; Li B; Zong Y; Yan Q
    Small; 2018 Feb; 14(8):. PubMed ID: 29280276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning Surface Electronic Configuration of NiFe LDHs Nanosheets by Introducing Cation Vacancies (Fe or Ni) as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.
    Wang Y; Qiao M; Li Y; Wang S
    Small; 2018 Apr; 14(17):e1800136. PubMed ID: 29611304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting oxygen evolution of layered double hydroxide through electronic coupling with ultralow noble metal doping.
    Li Z; Liu D; Lu X; Du M; Chen Z; Teng J; Sha R; Tian L
    Dalton Trans; 2022 Jan; 51(4):1527-1532. PubMed ID: 34989735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holey Assembly of Two-Dimensional Iron-Doped Nickel-Cobalt Layered Double Hydroxide Nanosheets for Energy Conversion Application.
    Septiani NLW; Kaneti YV; Guo Y; Yuliarto B; Jiang X; Ide Y; Nugraha N; Dipojono HK; Yu A; Sugahara Y; Golberg D; Yamauchi Y
    ChemSusChem; 2020 Mar; 13(6):1645-1655. PubMed ID: 31270940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction.
    Zhuang L; Ge L; Yang Y; Li M; Jia Y; Yao X; Zhu Z
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28240388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting Electrocatalytic Water Oxidation by Creating Defects and Lattice-Oxygen Active Sites on Ni-Fe Nanosheets.
    Chen C; Zhang P; Wang M; Zheng D; Chen J; Li F; Wu X; Fan K; Sun L
    ChemSusChem; 2020 Sep; 13(18):5067-5072. PubMed ID: 32666717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis.
    Liang H; Meng F; Cabán-Acevedo M; Li L; Forticaux A; Xiu L; Wang Z; Jin S
    Nano Lett; 2015 Feb; 15(2):1421-7. PubMed ID: 25633476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction.
    Zhou P; Wang Y; Xie C; Chen C; Liu H; Chen R; Huo J; Wang S
    Chem Commun (Camb); 2017 Aug; 53(86):11778-11781. PubMed ID: 29034926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating oxygen evolution electrocatalysis of two-dimensional NiFe layered double hydroxide nanosheets via space-confined amorphization.
    Jiao S; Yao Z; Li M; Mu C; Liang H; Zeng YJ; Huang H
    Nanoscale; 2019 Oct; 11(40):18894-18899. PubMed ID: 31596308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect-Rich Ultrathin Cobalt-Iron Layered Double Hydroxide for Electrochemical Overall Water Splitting.
    Liu PF; Yang S; Zhang B; Yang HG
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34474-34481. PubMed ID: 27998124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercalation-induced partial exfoliation of NiFe LDHs with abundant active edge sites for highly enhanced oxygen evolution reaction.
    Xu H; Zhang WD; Liu J; Yao Y; Yan X; Gu ZG
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1353-1361. PubMed ID: 34583040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoridated Iron-Nickel Layered Double Hydroxide for Enhanced Performance in the Oxygen Evolution Reaction.
    Pei C; Gu Y; Liu Z; Yu X; Feng L
    ChemSusChem; 2019 Aug; 12(16):3849-3855. PubMed ID: 31225718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of Amorphous Structures and Sulfur Defects into Ultrathin FeS Nanosheets to Achieve Superior Electrocatalytic Alkaline Oxygen Evolution.
    Shao Z; Meng H; Sun J; Guo N; Xue H; Huang K; He F; Li F; Wang Q
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51846-51853. PubMed ID: 33164498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.