BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31692476)

  • 1. Crystal structures of the Bacillus subtilis prophage lytic cassette proteins XepA and YomS.
    Freitag-Pohl S; Jasilionis A; Håkansson M; Svensson LA; Kovačič R; Welin M; Watzlawick H; Wang L; Altenbuchner J; Płotka M; Kaczorowska AK; Kaczorowski T; Nordberg Karlsson E; Al-Karadaghi S; Walse B; Aevarsson A; Pohl E
    Acta Crystallogr D Struct Biol; 2019 Nov; 75(Pt 11):1028-1039. PubMed ID: 31692476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lytic enzymes associated with defective prophages of Bacillus subtilis: sequencing and characterization of the region comprising the N-acetylmuramoyl-L-alanine amidase gene of prophage PBSX.
    Longchamp PF; Mauël C; Karamata D
    Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():1855-67. PubMed ID: 7921239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysis genes of the Bacillus subtilis defective prophage PBSX.
    Krogh S; Jørgensen ST; Devine KM
    J Bacteriol; 1998 Apr; 180(8):2110-7. PubMed ID: 9555893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Bacillus subtilis 168 prophage-associated lytic enzymes; identification and characterization of CWLA-related prophage proteins.
    Foster SJ
    J Gen Microbiol; 1993 Dec; 139(12):3177-84. PubMed ID: 7907356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterization of MrpR, the master repressor of the Bacillus subtilis prophage SPβ.
    Kohm K; Jalomo-Khayrova E; Krüger A; Basu S; Steinchen W; Bange G; Frunzke J; Hertel R; Commichau FM; Czech L
    Nucleic Acids Res; 2023 Sep; 51(17):9452-9474. PubMed ID: 37602373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cloning and analysis of prophage PBSX repressor gene from Bacillus subtilis].
    Li N; Chen Y; Feng J
    Yi Chuan Xue Bao; 1995; 22(6):478-86. PubMed ID: 8900842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of Bacillus subtilis SPP1 phage gp22 shares fold similarity with a domain of lactococcal phage p2 RBP.
    Veesler D; Blangy S; Spinelli S; Tavares P; Campanacci V; Cambillau C
    Protein Sci; 2010 Jul; 19(7):1439-43. PubMed ID: 20506290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The life cycle of SPβ and related phages.
    Kohm K; Hertel R
    Arch Virol; 2021 Aug; 166(8):2119-2130. PubMed ID: 34100162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmentally-regulated excision of the SPβ prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis.
    Abe K; Kawano Y; Iwamoto K; Arai K; Maruyama Y; Eichenberger P; Sato T
    PLoS Genet; 2014 Oct; 10(10):e1004636. PubMed ID: 25299644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of phage protein BC1872 from Bacillus cereus, a singleton with new fold.
    Zhang R; Joachimiak G; Jiang S; Cipriani A; Collart F; Joachimiak A
    Proteins; 2006 Jul; 64(1):280-3. PubMed ID: 16596646
    [No Abstract]   [Full Text] [Related]  

  • 11. Inhibitory effect of prophage SPβ fragments on phage SP10 ribonucleotide reductase function and its multiplication in Bacillus subtilis.
    Yee LM; Matsuoka S; Yano K; Sadaie Y; Asai K
    Genes Genet Syst; 2011; 86(1):7-18. PubMed ID: 21498918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological and genomic analysis of a PBSX-like defective phage induced from Bacillus pumilus AB94180.
    Jin T; Zhang X; Zhang Y; Hu Z; Fu Z; Fan J; Wu M; Wang Y; Shen P; Chen X
    Arch Virol; 2014 Apr; 159(4):739-52. PubMed ID: 24154951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of Bacillus subtilis SPβ prophage dUTPase and its complexes with two nucleotides.
    García-Nafría J; Harkiolaki M; Persson R; Fogg MJ; Wilson KS
    Acta Crystallogr D Biol Crystallogr; 2011 Mar; 67(Pt 3):167-75. PubMed ID: 21358047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Bacillus subtilis SPP1 phage gp23.1, a putative chaperone.
    Veesler D; Blangy S; Lichière J; Ortiz-Lombardía M; Tavares P; Campanacci V; Cambillau C
    Protein Sci; 2010 Sep; 19(9):1812-6. PubMed ID: 20665904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of the arbitrium peptide-AimR communication system in the phage lysis-lysogeny decision.
    Wang Q; Guan Z; Pei K; Wang J; Liu Z; Yin P; Peng D; Zou T
    Nat Microbiol; 2018 Nov; 3(11):1266-1273. PubMed ID: 30224798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Bacillus phage SPβ and its relatives: a temperate phage model system reveals new strains, species, prophage integration loci, conserved proteins and lysogeny management components.
    Kohm K; Floccari VA; Lutz VT; Nordmann B; Mittelstädt C; Poehlein A; Dragoš A; Commichau FM; Hertel R
    Environ Microbiol; 2022 Apr; 24(4):2098-2118. PubMed ID: 35293111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome DNA fragmentation and excretion caused by defective prophage gene expression in the early-exponential-phase culture of Bacillus subtilis.
    Shingaki R; Kasahara Y; Inoue T; Kokeguchi S; Fukui K
    Can J Microbiol; 2003 May; 49(5):313-25. PubMed ID: 12897825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a FourU RNA Thermometer in the 5' Untranslated Region of Autolysin Gene
    Tong AY; Caudill EE; Jones AR; F M Passalacqua L; Abdelsayed MM
    Biochemistry; 2023 Oct; 62(20):2902-2907. PubMed ID: 37699513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the Molecular Mechanism Underpinning Phage Arbitrium Communication Systems.
    Gallego Del Sol F; Penadés JR; Marina A
    Mol Cell; 2019 Apr; 74(1):59-72.e3. PubMed ID: 30745087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal Structure of LysB4, an Endolysin from
    Hong S; Son B; Ryu S; Ha NC
    Mol Cells; 2019 Jan; 42(1):79-86. PubMed ID: 30518175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.