These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31692582)

  • 1. Revealing the ultrastructure of the membrane pores of intact
    Lin YC; Huang C; Lai HC
    Heliyon; 2019 Oct; 5(10):e02636. PubMed ID: 31692582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the role of the rssC gene of Serratia marcescens by atomic force microscopy.
    Sheu BC; Lin CC; Fu YH; Lee SY; Lai HC; Wu RS; Liu CH; Tsai JC; Lin S
    Microsc Microanal; 2010 Dec; 16(6):755-63. PubMed ID: 20961481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Serratia marcescens hemolysin (ShlA) with artificial and erythrocyte membranes. Demonstration of the formation of aqueous multistate channels.
    Schönherr R; Hilger M; Broer S; Benz R; Braun V
    Eur J Biochem; 1994 Jul; 223(2):655-63. PubMed ID: 8055936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serratia type pore forming toxins.
    Hertle R
    Curr Protein Pept Sci; 2000 Jul; 1(1):75-89. PubMed ID: 12369921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the surface ultrastructure of Brevibacillus laterosporus using atomic force microscopy.
    Alzahrani K; Shukla AK; Alam J; Niazy AA; Alsouwaileh AM; Alhoshan M; Khalid J; Alghamadi HS
    Micron; 2020 Apr; 131():102827. PubMed ID: 31951938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The haemolysin-secreting ShlB protein of the outer membrane of Serratia marcescens: determination of surface-exposed residues and formation of ion-permeable pores by ShlB mutants in artificial lipid bilayer membranes.
    Könninger UW; Hobbie S; Benz R; Braun V
    Mol Microbiol; 1999 Jun; 32(6):1212-25. PubMed ID: 10383762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of dimensions of pentagonal doughnut-shaped C-reactive protein using an atomic force microscope and a dual polarisation interferometric biosensor.
    Lin S; Lee CK; Wang YM; Huang LS; Lin YH; Lee SY; Sheu BC; Hsu SM
    Biosens Bioelectron; 2006 Aug; 22(2):323-7. PubMed ID: 16510273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serratia marcescens hemolysin (ShlA) binds artificial membranes and forms pores in a receptor-independent manner.
    Hertle R
    J Membr Biol; 2002 Sep; 189(1):1-14. PubMed ID: 12202947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gadolinium induces domain and pore formation of human erythrocyte membrane: an atomic force microscopic study.
    Cheng Y; Liu M; Li R; Wang C; Bai C; Wang K
    Biochim Biophys Acta; 1999 Oct; 1421(2):249-60. PubMed ID: 10518695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium.
    Dufrêne YF; Boonaert CJ; Gerin PA; Asther M; Rouxhet PG
    J Bacteriol; 1999 Sep; 181(17):5350-4. PubMed ID: 10464206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstituted fusion pore.
    Jeremic A; Kelly M; Cho SJ; Stromer MH; Jena BP
    Biophys J; 2003 Sep; 85(3):2035-43. PubMed ID: 12944316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution.
    Pfreundschuh M; Hensen U; Müller DJ
    Nano Lett; 2013; 13(11):5585-93. PubMed ID: 24079830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct observation of nanometer-scale pores of melittin in supported lipid monolayers.
    Giménez D; Sánchez-Muñoz OL; Salgado J
    Langmuir; 2015 Mar; 31(10):3146-58. PubMed ID: 25705986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ imaging of mitochondrial outer-membrane pores using atomic force microscopy.
    Layton BE; Sastry AM; Lastoskie CM; Philbert MA; Miller TJ; Sullivan KA; Feldman EL; Wang CW
    Biotechniques; 2004 Oct; 37(4):564-70, 572-3. PubMed ID: 15517968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the porosity of calcified chicken eggshell using atomic force microscopy and image processing.
    Arzate-Vázquez I; Méndez-Méndez JV; Flores-Johnson EA; Nicolás-Bermúdez J; Chanona-Pérez JJ; Santiago-Cortés E
    Micron; 2019 Mar; 118():50-57. PubMed ID: 30590254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models of beta-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process.
    Jang H; Zheng J; Nussinov R
    Biophys J; 2007 Sep; 93(6):1938-49. PubMed ID: 17526580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and stability of a suspended biomimetic lipid bilayer on silicon submicrometer-sized pores.
    Simon A; Girard-Egrot A; Sauter F; Pudda C; Picollet D'Hahan N; Blum L; Chatelain F; Fuchs A
    J Colloid Interface Sci; 2007 Apr; 308(2):337-43. PubMed ID: 17275017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The family of Serratia type pore forming toxins.
    Hertle R
    Curr Protein Pept Sci; 2005 Aug; 6(4):313-25. PubMed ID: 16101433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli.
    Ide T; Laarmann S; Greune L; Schillers H; Oberleithner H; Schmidt MA
    Cell Microbiol; 2001 Oct; 3(10):669-79. PubMed ID: 11580752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.