These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31692653)

  • 1. Electrically control amplified spontaneous emission in colloidal quantum dots.
    Yu J; Shendre S; Koh WK; Liu B; Li M; Hou S; Hettiarachchi C; Delikanli S; Hernández-Martínez P; Birowosuto MD; Wang H; Sum T; Demir HV; Dang C
    Sci Adv; 2019 Oct; 5(10):eaav3140. PubMed ID: 31692653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Threshold, Highly Stable Colloidal Quantum Dot Short-Wave Infrared Laser enabled by Suppression of Trap-Assisted Auger Recombination.
    Taghipour N; Whitworth GL; Othonos A; Dalmases M; Pradhan S; Wang Y; Kumar G; Konstantatos G
    Adv Mater; 2022 Jan; 34(3):e2107532. PubMed ID: 34762320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal Quantum Dot Infrared Lasers Featuring Sub-Single-Exciton Threshold and Very High Gain.
    Taghipour N; Dalmases M; Whitworth GL; Dosil M; Othonos A; Christodoulou S; Liga SM; Konstantatos G
    Adv Mater; 2023 Jan; 35(1):e2207678. PubMed ID: 36333885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy.
    Fan F; Voznyy O; Sabatini RP; Bicanic KT; Adachi MM; McBride JR; Reid KR; Park YS; Li X; Jain A; Quintero-Bermudez R; Saravanapavanantham M; Liu M; Korkusinski M; Hawrylak P; Klimov VI; Rosenthal SJ; Hoogland S; Sargent EH
    Nature; 2017 Apr; 544(7648):75-79. PubMed ID: 28321128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards zero-threshold optical gain using charged semiconductor quantum dots.
    Wu K; Park YS; Lim J; Klimov VI
    Nat Nanotechnol; 2017 Dec; 12(12):1140-1147. PubMed ID: 29035399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films.
    Dang C; Lee J; Breen C; Steckel JS; Coe-Sullivan S; Nurmikko A
    Nat Nanotechnol; 2012 Apr; 7(5):335-9. PubMed ID: 22543426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-Band-Offset Perovskite Shells Increase Auger Lifetime in Quantum Dot Solids.
    Quintero-Bermudez R; Sabatini RP; Lejay M; Voznyy O; Sargent EH
    ACS Nano; 2017 Dec; 11(12):12378-12384. PubMed ID: 29227680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green Stimulated Emission Boosted by Nonradiative Resonant Energy Transfer from Blue Quantum Dots.
    Gao Y; Yu G; Wang Y; Dang C; Sum TC; Sun H; Demir HV
    J Phys Chem Lett; 2016 Jul; 7(14):2772-8. PubMed ID: 27388758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets.
    She C; Fedin I; Dolzhnikov DS; Dahlberg PD; Engel GS; Schaller RD; Talapin DV
    ACS Nano; 2015 Oct; 9(10):9475-85. PubMed ID: 26302368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Chloride Passivation on Recombination Dynamics in CdTe Colloidal Quantum Dots.
    Espinobarro-Velazquez D; Leontiadou MA; Page RC; Califano M; O'Brien P; Binks DJ
    Chemphyschem; 2015 Apr; 16(6):1239-44. PubMed ID: 25630838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Cascade Charge Transfer in Multibandgap Colloidal Quantum Dot Solids Enables Threshold Reduction for Optical Gain and Stimulated Emission.
    Taghipour N; Dalmases M; Whitworth GL; Wang Y; Konstantatos G
    Nano Lett; 2023 Sep; 23(18):8637-8642. PubMed ID: 37724790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots.
    Christodoulou S; Ramiro I; Othonos A; Figueroba A; Dalmases M; Özdemir O; Pradhan S; Itskos G; Konstantatos G
    Nano Lett; 2020 Aug; 20(8):5909-5915. PubMed ID: 32662655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-lived population inversion in isovalently doped quantum dots.
    Lahad O; Meir N; Pinkas I; Oron D
    ACS Nano; 2015 Jan; 9(1):817-24. PubMed ID: 25551172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Observation of Competition between Amplified Spontaneous Emission and Auger Recombination in Quasi-Two-Dimensional Perovskites.
    Cui M; Qin C; Jiang Y; Yuan M; Xu L; Song D; Jiang Y; Liu Y
    J Phys Chem Lett; 2020 Jul; 11(14):5734-5740. PubMed ID: 32598158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically driven amplified spontaneous emission from colloidal quantum dots.
    Ahn N; Livache C; Pinchetti V; Jung H; Jin H; Hahm D; Park YS; Klimov VI
    Nature; 2023 May; 617(7959):79-85. PubMed ID: 37138110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers.
    Roh K; Dang C; Lee J; Chen S; Steckel JS; Coe-Sullivan S; Nurmikko A
    Opt Express; 2014 Jul; 22(15):18800-6. PubMed ID: 25089497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of high-density multi-excitons in medium-size CdSe/CdZnS/ZnS colloidal quantum dots through transient spectroscopy and their optical gain properties.
    Yang H; Li S; Zhang L; Xiang W; Zhang Y; Wang X; Xiao M; Cui Y; Zhang J
    Nanoscale; 2022 Apr; 14(14):5369-5376. PubMed ID: 35311884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets.
    Gao Y; Li M; Delikanli S; Zheng H; Liu B; Dang C; Sum TC; Demir HV
    Nanoscale; 2018 May; 10(20):9466-9475. PubMed ID: 29767210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.