These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31692653)

  • 21. Single-exciton optical gain in semiconductor nanocrystals.
    Klimov VI; Ivanov SA; Nanda J; Achermann M; Bezel I; McGuire JA; Piryatinski A
    Nature; 2007 May; 447(7143):441-6. PubMed ID: 17522678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature-Induced Self-Compensating Defect Traps and Gain Thresholds in Colloidal Quantum Dots.
    Sabatini RP; Bappi G; Bicanic KT; Fan F; Hoogland S; Saidaminov MI; Sagar LK; Voznyy O; Sargent EH
    ACS Nano; 2019 Aug; 13(8):8970-8976. PubMed ID: 31310518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlling amplified spontaneous emission of quantum dots by polymerized nanostructure interfaces.
    Guo J; Jian J; Wang D; Zhang X
    Opt Lett; 2020 Aug; 45(16):4385-4388. PubMed ID: 32796964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultralow Threshold One-Photon- and Two-Photon-Pumped Optical Gain Media of Blue-Emitting Colloidal Quantum Dot Films.
    Guzelturk B; Kelestemur Y; Akgul MZ; Sharma VK; Demir HV
    J Phys Chem Lett; 2014 Jul; 5(13):2214-8. PubMed ID: 26279536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge Carrier Dynamics and Broad Wavelength Tunable Amplified Spontaneous Emission in Zn
    Li X; Wei Q; Wang K; Peng S; Liu T; Xing G; Tang Z
    J Phys Chem Lett; 2019 Dec; 10(23):7516-7522. PubMed ID: 31729223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling.
    Taghipour N; Delikanli S; Shendre S; Sak M; Li M; Isik F; Tanriover I; Guzelturk B; Sum TC; Demir HV
    Nat Commun; 2020 Jul; 11(1):3305. PubMed ID: 32620749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling and Optimizing Amplified Spontaneous Emission in Perovskites.
    Cho C; Palatnik A; Sudzius M; Grodofzig R; Nehm F; Leo K
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35242-35249. PubMed ID: 32658443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Giant Alloyed Hot Injection Shells Enable Ultralow Optical Gain Threshold in Colloidal Quantum Wells.
    Altintas Y; Gungor K; Gao Y; Sak M; Quliyeva U; Bappi G; Mutlugun E; Sargent EH; Demir HV
    ACS Nano; 2019 Sep; 13(9):10662-10670. PubMed ID: 31436957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots.
    Geiregat P; Houtepen AJ; Sagar LK; Infante I; Zapata F; Grigel V; Allan G; Delerue C; Van Thourhout D; Hens Z
    Nat Mater; 2018 Jan; 17(1):35-42. PubMed ID: 29035357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Assembled and Wavelength-Tunable Quantum Dot Whispering-Gallery-Mode Lasers for Backlight Displays.
    Chen W; Wang L; Liu R; Shen H; Du J; Fan F
    Nano Lett; 2023 Jan; 23(2):437-443. PubMed ID: 36630612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical Switching of Optical Gain in Perovskite Semiconductor Nanocrystals.
    Qin Z; Zhang C; Chen L; Yu T; Wang X; Xiao M
    Nano Lett; 2021 Sep; 21(18):7831-7838. PubMed ID: 34491061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport Layer Engineering Toward Lower Threshold for Perovskite Lasers.
    Zhang J; Qin J; Cai W; Tang Y; Zhang H; Wang T; Bakulin A; Hu B; Liu XK; Gao F
    Adv Mater; 2023 Jul; 35(30):e2300922. PubMed ID: 37086205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrically Switchable Amplified Spontaneous Emission from Lead Halide Perovskite Film.
    Liu P; Gu C; Liao Q
    ACS Omega; 2021 Dec; 6(49):34021-34026. PubMed ID: 34926949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Near-unity quantum yields from chloride treated CdTe colloidal quantum dots.
    Page RC; Espinobarro-Velazquez D; Leontiadou MA; Smith C; Lewis EA; Haigh SJ; Li C; Radtke H; Pengpad A; Bondino F; Magnano E; Pis I; Flavell WR; O'Brien P; Binks DJ
    Small; 2015 Apr; 11(13):1548-54. PubMed ID: 25348200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Random Lasing with Systematic Threshold Behavior in Films of CdSe/CdS Core/Thick-Shell Colloidal Quantum Dots.
    Gollner C; Ziegler J; Protesescu L; Dirin DN; Lechner RT; Fritz-Popovski G; Sytnyk M; Yakunin S; Rotter S; Yousefi Amin AA; Vidal C; Hrelescu C; Klar TA; Kovalenko MV; Heiss W
    ACS Nano; 2015 Oct; 9(10):9792-801. PubMed ID: 26364796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-Threshold Light Amplification in Bifluorene Single Crystals: Role of the Trap States.
    Baronas P; Kreiza G; Adomėnas P; Adomėnienė O; Kazlauskas K; Ribierre JC; Adachi C; Juršėnas S
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2768-2775. PubMed ID: 29278316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-controllable fiber interferometer utilizing photoexcitation dynamics in colloidal quantum dot.
    Gao F; Wang Y; Xu L; Feng Z; Wu Q; Zhang B; Liu J; Tang J; Tang M; Liu H; Fu S; Ruan Y; Ebendorff-Heidepriem H; Liu D
    Opt Express; 2018 Feb; 26(4):3903-3914. PubMed ID: 29475247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density.
    Sun B; Vafaie M; Levina L; Wei M; Dong Y; Gao Y; Kung HT; Biondi M; Proppe AH; Chen B; Choi MJ; Sagar LK; Voznyy O; Kelley SO; Laquai F; Lu ZH; Hoogland S; García de Arquer FP; Sargent EH
    Nano Lett; 2020 May; 20(5):3694-3702. PubMed ID: 32227970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector.
    Stranks SD; Wood SM; Wojciechowski K; Deschler F; Saliba M; Khandelwal H; Patel JB; Elston SJ; Herz LM; Johnston MB; Schenning AP; Debije MG; Riede MK; Morris SM; Snaith HJ
    Nano Lett; 2015 Aug; 15(8):4935-41. PubMed ID: 25989354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deciphering Ultrafast Carrier Dynamics of Eco-Friendly ZnSeTe-Based Quantum Dots: Toward High-Quality Blue-Green Emitters.
    Huang Z; Sun Q; Zhao S; Wu B; Zhang M; Zang Z; Wang Y
    J Phys Chem Lett; 2021 Dec; 12(49):11931-11938. PubMed ID: 34878791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.